sns_quantize_scf.c:373:69: error: invalid type argument of \u2018->\u2019 (have \u2018Dct2 {aka struct <anonymous>}\u2019) fprintf(fp5, "%d","%d","%p", dct2structSNS->length,dct2structSNS->fft->length,(void *)dct2structSNS->fft->handle);
时间: 2023-07-16 12:14:56 浏览: 191
这个错误是因为你正在尝试使用箭头运算符(->)来访问一个不是指针类型的结构体。根据你提供的代码,问题似乎出现在以下这一行:
```c
fprintf(fp5, "%d","%d","%p", dct2structSNS->length,dct2structSNS->fft->length,(void *)dct2structSNS->fft->handle);
```
其中,`dct2structSNS` 是一个 `Dct2` 结构体类型的变量,而它的成员 `fft` 是一个结构体指针类型。因此,在访问 `fft` 结构体的成员时,你需要使用 `->` 运算符而不是 `.` 运算符,就像这样:
```c
fprintf(fp5, "%d","%d","%p", dct2structSNS->length,dct2structSNS->fft->length,(void *)dct2structSNS->fft->handle);
```
这应该可以解决你遇到的问题。
相关问题
Traceback (most recent call last): File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/env.py", line 373, in get_module module = tf.load_op_library(str(module_file)) File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/tensorflow/python/framework/load_library.py", line 54, in load_op_library lib_handle = py_tf.TF_LoadLibrary(library_filename) tensorflow.python.framework.errors_impl.NotFoundError: /home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/op/libdeepmd_op.so: undefined symbol: _ZN6deepmd33prod_env_mat_a_nvnmd_quantize_cpuIdEEvPT_S2_S2_PiPKS1_PKiRKNS_10InputNlistEiS5_S5_iiffSt6vectorIiSaIiEE The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/chb/anaconda3/envs/deepmd2/bin/dp", line 7, in <module> from deepmd.entrypoints.main import main File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/__init__.py", line 10, in <module> import deepmd.utils.network as network File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/utils/__init__.py", line 2, in <module> from .data import ( File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/utils/data.py", line 11, in <module> from deepmd.env import ( File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/env.py", line 459, in <module> op_module = get_module("deepmd_op") File "/home/chb/anaconda3/envs/deepmd2/lib/python3.10/site-packages/deepmd/env.py", line 430, in get_module raise RuntimeError(error_message) from e RuntimeError: This deepmd-kit package is inconsitent with TensorFlow Runtime, thus an error is raised when loading deepmd_op. You need to rebuild deepmd-kit against this TensorFlow runtime. WARNING: devtoolset on RHEL6 and RHEL7 does not support _GLIBCXX_USE_CXX11_ABI=1. See https://bugzilla.redhat.com/show_bug.cgi?id=1546704
这是一个运行时错误,提示您的 deepmd-kit 包与 TensorFlow 运行时不一致,导致加载 deepmd_op 时发生错误。建议重新构建 deepmd-kit,使其与当前 TensorFlow 运行时一致。另外,警告信息提示您在 RHEL6 和 RHEL7 上使用 devtoolset 时可能会出现问题,具体信息可以参考 https://bugzilla.redhat.com/show_bug.cgi?id=1546704。
model = AutoModel.from_pretrained(r"E:\object\Python\chatglm\THUDM\chatglm-6b", trust_remote_code=True).quantize(8).half().cuda()
这段代码是用来加载预训练的语言模型,并对其进行量化和半精度处理,以提高模型的推理速度和节省模型所占用的内存空间。具体来说,这里使用了Hugging Face提供的AutoModel类,它可以根据模型名称自动选择对应的模型类型,并从远程服务器下载预训练参数。其中,"E:\object\Python\chatglm\THUDM\chatglm-6b"是预训练模型的本地路径,"trust_remote_code=True"表示信任从远程服务器下载的代码。接着,使用quantize(8)方法对模型进行8位量化,即将模型的权重和激活值从浮点数转换为8位整数,以减少模型计算所需的资源。最后,使用half()方法将模型的数据类型从32位浮点数转换为16位半精度浮点数,以进一步降低模型所需的内存。最后,使用cuda()方法将模型加载到GPU上进行计算。
阅读全文