数学模型课本里汽车采购中决策矩阵的熵、区分度和权重计算的模型建立、算法流程以及matlab代码
时间: 2024-03-11 07:49:34 浏览: 116
熵值法确定权重,熵值法确定权重步骤,matlab
5星 · 资源好评率100%
汽车采购中的决策矩阵可以使用熵权法来计算决策因素的权重,以下是一个简单的熵权法模型的建立和算法流程:
1. 建立决策矩阵 $M$,其中 $n$ 表示决策项目的数量,$m$ 表示决策因素的数量。
2. 将矩阵 $M$ 进行归一化处理,得到 $n \times m$ 的归一化矩阵 $N$,其中 $N_{i,j} = \frac{M_{i,j}}{\sum_{i=1}^n M_{i,j}}$。
3. 计算每个决策因素的熵值 $E_j$,$E_j = -\sum_{i=1}^n N_{i,j} \log_2 N_{i,j}$,表示决策因素 $j$ 对决策的影响力。
4. 计算每个决策因素的区分度 $D_j$,$D_j = 1 - E_j$,表示决策因素 $j$ 的区分度。
5. 计算每个决策因素的权重 $w_j$,$w_j = \frac{D_j}{\sum_{j=1}^m D_j}$。
以下是一个示例的 Matlab 代码:
```matlab
% 假设我们有一个 5x4 的决策矩阵 M
M = [3, 4, 2, 1; 2, 3, 4, 1; 1, 2, 3, 4; 4, 3, 2, 1; 1, 2, 3, 4];
% 归一化矩阵 N
N = M ./ sum(M);
% 计算熵值 E 和区分度 D
E = -sum(N .* log2(N));
D = 1 - E;
% 计算权重 w
w = D ./ sum(D);
```
这样,我们就得到了每个决策因素的权重,可以根据权重来进行决策。需要注意的是,熵权法也有一些局限性,例如可能会受到样本数量和分布的影响,因此在实际应用中需要根据具体情况来选择合适的决策方法。
阅读全文