segformer语义分割代码
时间: 2023-11-29 07:03:32 浏览: 173
以下是一个基于Segformer模型的简单语义分割代码,使用的是PyTorch框架。
首先,需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models.segmentation as segmentation
```
然后,定义模型:
```python
class Segformer(nn.Module):
def __init__(self, num_classes):
super(Segformer, self).__init__()
# 使用预训练的Segformer模型
self.segformer = segmentation.segformer.segformer_resnet50d_256(pretrained=True, num_classes=num_classes)
def forward(self, x):
return self.segformer(x)['out']
```
接下来,定义训练函数:
```python
def train(model, device, train_loader, optimizer, criterion, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
```
定义测试函数:
```python
def test(model, device, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}'.format(test_loss))
```
最后,定义主函数并开始训练:
```python
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载数据集
train_dataset = datasets.Cityscapes('path/to/dataset', split='train', mode='fine', target_type='semantic')
test_dataset = datasets.Cityscapes('path/to/dataset', split='val', mode='fine', target_type='semantic')
# 数据预处理
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
train_dataset.transform = transform
test_dataset.transform = transform
# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型、损失函数和优化器
model = Segformer(num_classes=34).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
# 训练模型
for epoch in range(1, 11):
train(model, device, train_loader, optimizer, criterion, epoch)
test(model, device, test_loader, criterion)
```
这是一个基本的Segformer语义分割代码示例,可以根据需要进行修改。
阅读全文