pandas datetime64
时间: 2023-10-16 08:32:47 浏览: 104
pandas的to_datetime时间转换使用及学习心得
`pandas` 中的 `datetime64` 是一种日期时间数据类型,它可以表示纳秒级别的时间戳。它具有高效的计算能力和易于使用的接口,可以方便地进行日期和时间数据的处理和分析。
在 `pandas` 中,可以使用 `pd.to_datetime()` 函数将字符串或数字转换为 `datetime64` 类型的日期时间数据。例如:
```python
import pandas as pd
date_str = '2022-01-01'
date = pd.to_datetime(date_str)
print(date)
# 2022-01-01 00:00:00
```
`datetime64` 对象可以进行一些基本的运算,如加减、比较等。例如:
```python
import pandas as pd
date1 = pd.to_datetime('2022-01-01')
date2 = pd.to_datetime('2022-01-02')
print(date2 - date1)
# 1 days 00:00:00
print(date1 < date2)
# True
```
在 `pandas` 中,还提供了一些方便的函数和方法,如 `pd.date_range()` 可以生成一段时间范围内的日期序列,`Series.dt` 属性可以获取日期时间数据的年份、月份、日等信息。例如:
```python
import pandas as pd
dates = pd.date_range(start='2022-01-01', end='2022-01-10')
print(dates)
# DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',
# '2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08',
# '2022-01-09', '2022-01-10'],
# dtype='datetime64[ns]', freq='D')
date = pd.to_datetime('2022-01-01')
print(date.year)
# 2022
print(date.month)
# 1
print(date.day)
# 1
```
总之,`pandas` 中的 `datetime64` 类型提供了方便的日期时间数据处理功能,可以帮助我们更轻松地进行数据分析和处理。
阅读全文