使用谱方法考虑求解如下的亥姆霍兹方程: $$\nabla^2 u(x,y) + k^2u(x,y) = f(x,y)$$,基函数选择傅里叶级数,给出Python程序
时间: 2024-05-06 21:19:55 浏览: 143
谱方法 算法 分析与应用
以下为使用谱方法求解二维亥姆霍兹方程的Python程序:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义问题中的参数
Lx = 1.0 # 区域长度
Ly = 1.0 # 区域宽度
Nx = 64 # 空间离散点数
Ny = 64
k = 10.0 # 波数
f = lambda x, y: np.exp(-((x-0.5)**2 + (y-0.5)**2)/0.1) # 源函数
# 计算傅里叶系数
def fourier_coeff(f, Nx, Ny):
fx = np.zeros((Nx, Ny))
fy = np.zeros((Nx, Ny))
for j in range(Ny):
fy[:, j] = np.fft.fft(f[:, j])
for i in range(Nx):
fx[i, :] = np.fft.fft(fx[i, :])
return fx, fy
# 计算解函数
def solve_helmholtz(Lx, Ly, Nx, Ny, k, f):
# 创建网格和求解矩阵
x = np.linspace(0, Lx, Nx, endpoint=False)
y = np.linspace(0, Ly, Ny, endpoint=False)
X, Y = np.meshgrid(x, y, indexing='ij')
dx = Lx / Nx
dy = Ly / Ny
A = np.zeros((Nx, Ny, Nx, Ny))
for i in range(Nx):
for j in range(Ny):
A[i, j, i, j] = -4.0 + k**2 * dx**2
if i > 0:
A[i, j, i-1, j] = 1.0
if i < Nx-1:
A[i, j, i+1, j] = 1.0
if j > 0:
A[i, j, i, j-1] = 1.0
if j < Ny-1:
A[i, j, i, j+1] = 1.0
A = A.reshape((Nx*Ny, Nx*Ny))
# 计算傅里叶系数和右端项
fx, fy = fourier_coeff(f(X, Y), Nx, Ny)
rhs = np.zeros(Nx*Ny, dtype=np.complex)
for i in range(Nx):
for j in range(Ny):
rhs[i*Ny+j] = fx[i, j] + fy[i, j]
# 解线性方程组
u = np.linalg.solve(A, rhs)
u = u.reshape((Nx, Ny)).real
return u
# 计算解函数
u = solve_helmholtz(Lx, Ly, Nx, Ny, k, f)
# 绘图
plt.imshow(u, extent=[0, Lx, 0, Ly], origin='lower')
plt.colorbar()
plt.show()
```
阅读全文