YOLO系列查看训练总召回率(Recall)
时间: 2024-01-01 08:05:09 浏览: 128
在YOLO系列算法中,训练总召回率(Recall)是一个很重要的评价指标,它可以用来评估算法的整体性能。下面分别介绍YOLOv3和YOLOv4如何查看训练总召回率。
YOLOv3
在YOLOv3中,可以通过训练日志文件来查看训练总召回率。训练日志文件中包含了每个类别的召回率、平均召回率以及整体召回率等信息。具体来说,可以在训练日志文件中搜索 "mean_average_precision" 或 "mAP",找到对应的值即可。例如:
```
total_bbox = 1000, rewritten_bbox = 0.000000 % 0.000000 %
class_id = 0, name = person, ap = 90.00% (TP = 900, FP = 100)
class_id = 1, name = car, ap = 80.00% (TP = 800, FP = 200)
...
class_id = 19, name = dog, ap = 70.00% (TP = 700, FP = 300)
for conf_thresh = 0.25, precision = 0.80, recall = 0.85, F1-score = 0.83
for conf_thresh = 0.25, TP = 10000, FP = 2500, FN = 1500, average IoU = 65.00 %
```
上述日志信息中,"ap" 表示每个类别的召回率(Average Precision),"mAP" 表示平均召回率(Mean Average Precision),"precision" 表示精度,"recall" 表示召回率,"F1-score" 表示精确率和召回率的调和平均数。通过查看训练日志文件中的这些信息,可以得到训练总召回率。
YOLOv4
在YOLOv4中,可以通过训练日志文件或测试代码来查看训练总召回率。训练日志文件中包含了每个类别的召回率、平均召回率以及整体召回率等信息。具体来说,可以在训练日志文件中搜索 "mAP" 或 "recall",找到对应的值即可。例如:
```
class_id = 0, name = person, ap = 90.00% (TP = 900, FP = 100)
class_id = 1, name = car, ap = 80.00% (TP = 800, FP = 200)
...
class_id = 19, name = dog, ap = 70.00% (TP = 700, FP = 300)
for conf_thresh = 0.25, precision = 0.80, recall = 0.85, F1-score = 0.83
for conf_thresh = 0.25, TP = 10000, FP = 2500, FN = 1500, average IoU = 65.00 %
mAP@0.50 = 0.85, 0.92, 0.83 (moving avg over 10 iterations)
mAP@0.75 = 0.60, 0.70, 0.50 (moving avg over 10 iterations)
```
上述日志信息中,"ap" 表示每个类别的召回率(Average Precision),"mAP" 表示平均召回率(Mean Average Precision),"precision" 表示精度,"recall" 表示召回率,"F1-score" 表示精确率和召回率的调和平均数。通过查看训练日志文件中的这些信息,可以得到训练总召回率。
阅读全文