kipfs GCN模型
时间: 2023-11-16 14:18:03 浏览: 103
包括:1)使用Python通过随机序列吸附法生成颗粒图像的代码;2)提取图像颗粒轮廓直径,生成Graph;3)训练GCN模型
Kipf和Welling在2017年提出了一种基于图卷积神经网络(Graph Convolutional Networks, GCN)的半监督学习算法,该算法被称为Kipf和Welling的GCN模型。GCN模型是一种基于深度学习的图神经网络,用于处理节点分类、链接预测和社区检测等图形任务。
Kipf和Welling的GCN模型是一种基于邻接矩阵的图卷积神经网络,通过对邻接矩阵进行卷积操作,将节点的特征信息传递给相邻节点,从而实现节点之间的信息交互和特征提取。该模型采用了一个两层的卷积神经网络结构,其中每个卷积层都包含一个线性变换和一个非线性激活函数,用于将节点的特征信息转换到一个低维度的特征空间中。在卷积过程中,GCN模型通过邻接矩阵来控制节点之间的信息传递,从而保留了节点之间的拓扑结构信息。
Kipf和Welling的GCN模型是一种简单、高效、可扩展、易于实现的图卷积神经网络算法,已经在许多图形任务中取得了良好的表现。
阅读全文