该过程的推理对不对?这里的\kappa是多少?\begin{equation}\label{7a} \begin{aligned} \min_{}C_{1}\sum_{i=1}^{m_{2}}\frac{\sigma^{2}}{2}[1-\exp(-\frac{\xi_{i}^{2}}{2\sigma^{2}})]^{\theta} \end{aligned} \end{equation} We can rewrite \eqref{7a} as: \begin{equation}\label{15} \begin{aligned} \max_{\alpha}G_{1}(\alpha) \end{aligned} \end{equation} where \begin{equation}\label{15} \begin{aligned} G_{1}(\alpha)= C_{1}\sum_{i=1}^{m_{2}}\frac{\sigma^{2}}{2}[\exp(-\frac{\xi_{i}^{2}}{2\sigma^{2}})]^{\theta} \end{aligned} \end{equation} To facilitate the following derivations, we define the convex function $g_{\theta}(v)$ as: \begin{equation} g{\theta}(v) = \frac{1}{\theta}[-v\log(-v) + v]^{\theta}, ~~v<0 \end{equation} Then, using the theory of conjugate functions, we have: \begin{equation} \exp(-\frac{\xi_i^2}{2\sigma^2}) = \sup{v<0}[v\frac{\xi_i^2}{2\sigma^2}-g_{\theta}(v)], ~~~v=-\exp\left(-\frac{(\xi_i^{(s)})^2}{2\sigma^{2}}\right)^{\theta} \end{equation} Thus, we can get: \begin{equation} \max{\alpha,v<0} \left{ \sum_{i=1}^{m_2} [v_i\frac{\xi_i^2}{2\sigma^2} - g_{\theta}(v{i})] \right} \end{equation} which is equivalent to: \begin{equation} \max_{\alpha} \left{ \sum_{i=1}^{m_2} [\exp(-\frac{\xi_i^2}{2\sigma^2})^{\theta} \frac{\xi_i^2}{2\sigma^2} - g_{\theta}(-\exp(-\frac{\xi_i^2}{2\sigma^2})^{\theta})] \right} \end{equation} This can be optimized using the HQ algorithm , where we alternate between optimizing $\alpha$ and $v$. Specifically, given fixed $\alpha^{(s)}$, we can solve for $v_i^{(s)}$ using the same equation as before: \begin{equation} v_i^{(s)} = -\exp(-\frac{(\xi^{(s)})^2}{2\sigma^2})^{\theta} \end{equation} then,we can get: \begin{equation}\label{1} \begin{aligned} \min{}C_{1}\sum_{i=1}^{m_{2}}\frac{\sigma^{2}}{2}[1-\exp(-\frac{\xi_{i}^{2}}{2\sigma^{2}})]^{\theta} = \frac{1}{2\sigma^2}\kappa^T \Omega^{\frac{1}{\theta}}\kappa \end{aligned} \end{equation} 其中 $\kappa$ 为长度为 $m_2$ 的向量,其第 $i$ 个元素为 $\xi_i$,$\Omega$ 为一个对角线矩阵,其第 $i$ 个对角线元素为 $-\theta \exp(-\frac{\xi_i^2}{2\sigma^2})^{\theta}$。
时间: 2023-08-30 17:13:06 浏览: 110
根据推理,我们可以得出:
- 在式子(7a)的基础上,通过引入一个凸函数 $g_{\theta}(v)$,将式子(7a)重写为了式子(15)的形式,其中 $G_{1}(\alpha)$ 是一个凸函数。
- 利用共轭函数的理论,将式子中的 $\exp(-\frac{\xi_i^2}{2\sigma^2})$ 表示为 $v\frac{\xi_i^2}{2\sigma^2}-g_{\theta}(v)$ 的形式,其中 $v$ 是一个小于 0 的实数。
- 最终推导出式子(1),其中 $\kappa$ 是一个长度为 $m_2$ 的向量,$\Omega$ 是一个对角线矩阵。该式可以被优化为 $\frac{1}{2\sigma^2}\kappa^T \Omega^{\frac{1}{\theta}}\kappa$ 的形式。
至于 $\kappa$ 的具体数值,需要在求解过程中给出。
阅读全文