for i0, i in enumerate(img_set): img0 = cv2.imread(i)什么意思
时间: 2024-05-20 10:10:50 浏览: 90
这是一段 Python 代码,主要完成以下操作:
1. 遍历一个名为 `img_set` 的列表,其中每个元素都是一个图片的路径;
2. 对于遍历到的每个路径 `i`,使用 OpenCV 库的 `cv2.imread()` 函数读取对应的图片,并将其存储在变量 `img0` 中;
3. 在遍历过程中,使用 `enumerate()` 函数获取当前遍历到的元素的索引 `i0`。
因此,这段代码的主要作用是读取一组图片,并且记录每个图片在列表中的索引。
相关问题
import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()
这段代码使用了PyTorch、OpenCV等库,从模型模块中导入了parsingNet模型,从常用工具模块中导入了merge_config和dist_print等函数。代码还使用了LaneTestDataset数据集和culane_row_anchor、tusimple_row_anchor常量。在if __name__ == "__main__":中,代码设置了torch.backends.cudnn.benchmark为True,合并了配置信息args和cfg,并输出了“start testing...”信息。然后根据配置信息中的backbone选择了不同的通道数,并初始化了一个parsingNet模型。
import cv2 import numpy as np import matplotlib.pyplot as plt def build_filters(): filters = [] ksize = 9 for theta in np.arange(0, np.pi, np.pi / 8): for sigma in range(1, 6): for frequency in (0.1, 0.2): kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, frequency, 0.5, 0, ktype=cv2.CV_32F) kernel /= 1.5 * kernel.sum() filters.append(kernel) return filters def process(img, filters): features = np.zeros((img.shape[0], img.shape[1], len(filters)), dtype=np.float32) for i, kernel in enumerate(filters): filtered = cv2.filter2D(img, cv2.CV_8UC3, kernel) features[:, :, i] = filtered return features # 读取图像并转为灰度图 img = cv2.imread('lena.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 构建gabor滤波器组 filters = build_filters() # 对图像进行gabor特征提取 features = process(gray, filters) # 显示gabor滤波后的特征图像 fig, axes = plt.subplots(nrows=5, ncols=8, figsize=(16, 10)) for i, ax in enumerate(axes.flat): ax.imshow(features[:, :, i], cmap='gray') ax.set_xticks([]) ax.set_yticks([]) plt.show()用矩阵将这段代码中特征提取后的图像表示出来
很抱歉,我无法将图像在这里直接显示出来。但是,你可以将代码复制到你的本地环境中运行,然后查看生成的图像。在这段代码中,使用了OpenCV库和NumPy库构建了Gabor滤波器组,然后对图像进行Gabor特征提取,并使用Matplotlib库将每个滤波器返回的特征图像显示出来。features是一个三维数组,其中第一维和第二维表示图像的高度和宽度,第三维是每个滤波器返回的特征图像。所以你可以使用features[:, :, i]来获取第i个特征图像的矩阵表示。
阅读全文