lasso回归筛选变量代码
时间: 2023-08-23 08:03:53 浏览: 313
lasso variable selection
下面是使用Python中的scikit-learn库进行Lasso回归变量筛选的示例代码:
```
from sklearn.linear_model import Lasso
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
# 加载Boston Housing数据集
boston = load_boston()
X = boston.data
y = boston.target
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 构建Lasso回归模型
lasso = Lasso(alpha=0.1)
lasso.fit(X_scaled, y)
# 输出模型系数
coef = lasso.coef_
print(coef)
```
在这个示例代码中,我们首先使用scikit-learn库中的load_boston函数加载了Boston Housing数据集,然后对数据进行标准化处理。接着,我们构建了一个Lasso回归模型,并使用fit函数拟合了模型。最后,我们输出了模型系数,即每个变量对应的系数值。这些系数值可以用于判断每个变量在模型中的重要程度,进而进行变量筛选。
阅读全文