帮我写一份可以在jupyter上运行的用NASnet模型训练cifar10数据集的代码
时间: 2024-03-23 08:39:56 浏览: 59
好的,以下是可以在Jupyter上运行的使用NASnet模型训练CIFAR10数据集的代码示例。注意,由于NASnet模型较大,需要较长的时间进行训练,建议在GPU环境下运行。
首先,我们需要导入所需的库和模块:
``` python
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.applications.nasnet import NASNetMobile
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
```
接下来,我们需要加载CIFAR10数据集:
``` python
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
```
然后,我们需要对数据进行预处理:
``` python
# 将像素值归一化到0-1之间
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# 将标签进行one-hot编码
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
```
接下来,我们需要定义NASnet模型:
``` python
# 加载NASnet模型
base_model = NASNetMobile(weights='imagenet', include_top=False, input_shape=(32, 32, 3))
# 添加全局平均池化层和全连接层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
# 构建完整模型
model = Model(inputs=base_model.input, outputs=predictions)
```
接下来,我们需要编译模型并开始训练:
``` python
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 数据增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
# 开始训练
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32, epochs=10,
validation_data=(x_test, y_test))
```
最后,我们可以使用测试集对模型进行评估:
``` python
# 对测试集进行评估
score = model.evaluate(x_test, y_test, verbose=0)
print("Test Loss: {:.3f}, Test Accuracy: {:.3f}".format(score[0], score[1]))
```
希望这份代码能够帮助到你!
阅读全文