android usb摄像头人脸识别代码
时间: 2023-08-25 21:06:09 浏览: 169
以下是一个简单的 Android USB 摄像头人脸识别的代码示例:
1. 添加依赖库
在你的 build.gradle 文件中添加以下依赖库:
```
implementation 'org.bytedeco:javacv-platform:1.5.3'
implementation 'org.bytedeco.javacpp-presets:opencv:4.5.1-1.5.3'
```
2. 打开 USB 摄像头
首先,你需要使用 Android 的 Camera2 API 打开 USB 摄像头。你可以使用以下代码来打开 USB 摄像头:
```java
private CameraDevice mCameraDevice;
private HandlerThread mBackgroundThread;
private Handler mBackgroundHandler;
private String mCameraId = "1";
private ImageReader mImageReader;
private Size mPreviewSize;
private final CameraDevice.StateCallback mStateCallback = new CameraDevice.StateCallback() {
@Override
public void onOpened(@NonNull CameraDevice cameraDevice) {
mCameraDevice = cameraDevice;
startPreview();
}
@Override
public void onDisconnected(@NonNull CameraDevice cameraDevice) {
cameraDevice.close();
mCameraDevice = null;
}
@Override
public void onError(@NonNull CameraDevice cameraDevice, int error) {
cameraDevice.close();
mCameraDevice = null;
}
};
private void openCamera() {
CameraManager manager = (CameraManager) getSystemService(Context.CAMERA_SERVICE);
try {
CameraCharacteristics characteristics = manager.getCameraCharacteristics(mCameraId);
StreamConfigurationMap map = characteristics.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
mPreviewSize = map.getOutputSizes(SurfaceTexture.class)[0];
if (ActivityCompat.checkSelfPermission(this, Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.CAMERA}, CAMERA_PERMISSION_REQUEST);
return;
}
manager.openCamera(mCameraId, mStateCallback, mBackgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
```
3. 实现人脸识别
一旦你打开了 USB 摄像头并开始预览,你就可以使用 OpenCV 库来实现人脸识别。以下是一个简单的示例代码:
```java
private CascadeClassifier mFaceDetector;
private Mat mGray;
private Mat mRgba;
private void startPreview() {
SurfaceTexture texture = mTextureView.getSurfaceTexture();
assert texture != null;
texture.setDefaultBufferSize(mPreviewSize.getWidth(), mPreviewSize.getHeight());
Surface surface = new Surface(texture);
try {
mCaptureRequestBuilder = mCameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);
mCaptureRequestBuilder.addTarget(surface);
mImageReader = ImageReader.newInstance(mPreviewSize.getWidth(), mPreviewSize.getHeight(), ImageFormat.YUV_420_888, 2);
mImageReader.setOnImageAvailableListener(mOnImageAvailableListener, mBackgroundHandler);
Surface readerSurface = mImageReader.getSurface();
mCaptureRequestBuilder.addTarget(readerSurface);
mCameraDevice.createCaptureSession(Arrays.asList(surface, readerSurface), mSessionStateCallback, mBackgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
}
mFaceDetector = new CascadeClassifier();
mFaceDetector.load(getCascadeFile(R.raw.lbpcascade_frontalface));
mGray = new Mat();
mRgba = new Mat();
}
private File getCascadeFile(int id) {
try {
InputStream is = getResources().openRawResource(id);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
File cascadeFile = new File(cascadeDir, "cascade.xml");
FileOutputStream os = new FileOutputStream(cascadeFile);
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
return cascadeFile;
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
private final ImageReader.OnImageAvailableListener mOnImageAvailableListener = new ImageReader.OnImageAvailableListener() {
@Override
public void onImageAvailable(ImageReader reader) {
Image image = reader.acquireLatestImage();
if (image == null) {
return;
}
Image.Plane[] planes = image.getPlanes();
ByteBuffer buffer = planes[0].getBuffer();
byte[] bytes = new byte[buffer.remaining()];
buffer.get(bytes);
Size size = new Size(mPreviewSize.getWidth(), mPreviewSize.getHeight());
Mat yuv = new Mat(size, CvType.CV_8UC1);
yuv.put(0, 0, bytes);
Imgproc.cvtColor(yuv, mRgba, Imgproc.COLOR_YUV2RGBA_NV21);
Imgproc.cvtColor(mRgba, mGray, Imgproc.COLOR_RGBA2GRAY);
MatOfRect faces = new MatOfRect();
mFaceDetector.detectMultiScale(mGray, faces, 1.3, 5, 0, new Size(30, 30), new Size());
for (Rect rect : faces.toArray()) {
Imgproc.rectangle(mRgba, rect.tl(), rect.br(), new Scalar(0, 255, 0, 255), 3);
}
image.close();
}
};
```
这个示例代码使用了 OpenCV 库中的级联分类器来识别人脸。当你检测到人脸时,你可以在预览中显示一个矩形来标识出人脸的位置。
这只是一个简单的示例,你可以根据你的需求调整代码。
阅读全文