import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from arch import arch_model from pmdarima.arima import auto_arima # 读取Excel数据 data = pd.read_excel('三个-负向标准化-二分.xlsx') data2 = pd.read_excel # 将数据转换为时间序列 data['DATE'] = pd.to_datetime(data['DATE']) # data.set_index('DATE', inplace=True) data = data['F4'] # ADF检验 ADFresult = adfuller(data) print('ADF Statistic: %f' % ADFresult[0]) print('p-value: %f' % ADFresult[1]) if ADFresult[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 AADFresult = adfuller(diff_data) print('ADF Statistic after differencing: %f' % AADFresult[0]) print('p-value after differencing: %f' % AADFresult[1]) data = diff_data # Ljung-Box检验 # result = acorr_ljungbox(data, lags=10) # print('Ljung-Box Statistics: ', result[0]) # print('p-values: ', result[1]) # 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=False, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False) model_resid = stepwise_model.resid() print(stepwise_model.summary()) # # 计算ARIMA-GARCH组合模型的参数 # model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=2, o=0, q=1) # AGresult = model.fit(disp='off') # print(AGresult.summary()) model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', o=0) # 使用 auto_arima 函数自动确定 p 和 q 的值 stepwise_fit = auto_arima(model_resid, start_p=0, start_q=0, max_p=5, max_q=5, start_P=0, seasonal=True, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False) # 根据自动确定的 p 和 q 的值来拟合模型 model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=stepwise_fit.order[1], q=stepwise_fit.order[2], o=0) AGresult = model.fit(disp='off') print(AGresult.summary())后面加上对最终残差进行检验的代码

时间: 2024-02-19 17:01:52 浏览: 22
可以加上以下代码来对最终的残差进行检验: # 残差序列的Ljung-Box检验 resid_lb = acorr_ljungbox(AGresult.resid, lags=10) print('Ljung-Box Statistics of Residuals: ', resid_lb[0]) print('p-values of Residuals: ', resid_lb[1]) # 残差序列的自相关图和偏自相关图 fig, ax = plt.subplots(nrows=2, figsize=(10, 8)) fig.subplots_adjust(hspace=0.5) ax[0].plot(AGresult.resid) ax[0].set_title('Residuals of ARIMA-GARCH Model') ax[1] = plot_acf(AGresult.resid, ax=ax[1], lags=10) plt.show() 其中,acorr_ljungbox() 函数用于进行 Ljung-Box 检验,plot_acf() 函数用于绘制自相关图和偏自相关图。通过这些检验和图形可以对模型的残差进行评估,判断模型是否具有良好的拟合效果。
相关问题

import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from arch import arch_model from pmdarima.arima import auto_arima # 读取Excel数据 data = pd.read_excel('三个-负向标准化-二分.xlsx') data2 = pd.read_excel # 将数据转换为时间序列 data['DATE'] = pd.to_datetime(data['DATE']) # data.set_index('DATE', inplace=True) data = data['F4'] # ADF检验 ADFresult = adfuller(data) print('ADF Statistic: %f' % ADFresult[0]) print('p-value: %f' % ADFresult[1]) if ADFresult[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 AADFresult = adfuller(diff_data) print('ADF Statistic after differencing: %f' % AADFresult[0]) print('p-value after differencing: %f' % AADFresult[1]) data = diff_data# 计算ARIMA-GARCH组合模型的参数 model = arch_model(data, mean='AR', lags=2, vol='GARCH', p=1, o=0, q=1) AGresult = model.fit(disp='off') print(AGresult.summary())在代码后面加上计算预测值和真实值的MSE

由于该代码没有进行ARIMA模型的训练,因此无法对模型进行预测。在进行模型预测之前,需要使用ARIMA模型对时间序列进行训练,然后再使用模型进行预测。 以下是一个可能的代码示例,用于训练ARIMA模型并对未来30个时间点进行预测,然后计算预测值和真实值的MSE: ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from arch import arch_model from pmdarima.arima import auto_arima # 读取Excel数据 data = pd.read_excel('三个-负向标准化-二分.xlsx') data['DATE'] = pd.to_datetime(data['DATE']) data = data.set_index('DATE') data = data['F4'] # ADF检验 ADFresult = adfuller(data) print('ADF Statistic: %f' % ADFresult[0]) print('p-value: %f' % ADFresult[1]) if ADFresult[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 AADFresult = adfuller(diff_data) print('ADF Statistic after differencing: %f' % AADFresult[0]) print('p-value after differencing: %f' % AADFresult[1]) data = diff_data # 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=False, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=True) # 计算预测值和真实值的MSE train_data = data[:-30] # 选取训练数据,最后30个数据作为测试数据 test_data = data[-30:] model_fit = stepwise_model.fit(train_data) forecast = model_fit.predict(n_periods=30) mse = np.mean((forecast - test_data) ** 2) print('Mean Squared Error:', mse) # 计算ARIMA-GARCH组合模型的参数 model_resid = model_fit.resid() model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=1, o=0, q=1) AGresult = model.fit(disp='off') print(AGresult.summary()) ``` 这段代码首先对时间序列进行ADF检验和差分处理,然后使用`auto_arima`函数选择最佳的ARIMA模型。接着,将数据分成训练数据和测试数据,使用训练数据对ARIMA模型进行训练,并对未来30个时间点进行预测,最后计算预测值和真实值的MSE。最后,使用ARIMA模型的残差数据训练ARIMA-GARCH组合模型,并输出模型的参数信息。

优化这段代码import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from arch import arch_model from pmdarima.arima import auto_arima # 读取Excel数据 data = pd.read_excel('三个-负向标准化-二分.xlsx') data2 = pd.read_excel # 将数据转换为时间序列 data['DATE'] = pd.to_datetime(data['DATE']) # data.set_index('DATE', inplace=True) data = data['F4'] # ADF检验 ADFresult = adfuller(data) print('ADF Statistic: %f' % ADFresult[0]) print('p-value: %f' % ADFresult[1]) if ADFresult[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 AADFresult = adfuller(diff_data) print('ADF Statistic after differencing: %f' % AADFresult[0]) print('p-value after differencing: %f' % AADFresult[1]) data = diff_data # Ljung-Box检验 # result = acorr_ljungbox(data, lags=10) # print('Ljung-Box Statistics: ', result[0]) # print('p-values: ', result[1]) # 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=False, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=True) model_resid = stepwise_model.resid() print(stepwise_model.summary()) # 计算ARIMA-GARCH组合模型的参数 model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=1, o=0, q=1) AGresult = model.fit(disp='off') print(AGresult.summary())

这段代码已经比较简洁,但是以下是我觉得可以进一步优化的地方: 1. 将函数封装:可以将AD检验、差分、Ljung-Box检验、选择最佳ARIMA模型和计算ARIMA-GARCH组合模型的参数这些操作封装成函数,这样可以提高代码的复用性和可读性。 2. 使用变量名:变量名应该是有意义的,这样可以提高代码的可读性。例如,可以将data改为ts_data,AADFresult改为diff_ADF_result等。 3. 移除注释:注释是很有用的,但是在代码中过多的注释会让代码难以看懂。移除一些不必要的注释可以提高代码的可读性。 4. 只保留需要的模块:在这段代码中,虽然导入了许多模块,但是实际上只使用了其中的一部分。可以只导入需要的模块,避免浪费资源。 优化后的代码如下: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from arch import arch_model from pmdarima.arima import auto_arima def adf_test(data): """进行ADF检验""" result = adfuller(data) print('ADF Statistic: %f' % result[0]) print('p-value: %f' % result[1]) if result[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 diff_ADF_result = adfuller(diff_data) print('ADF Statistic after differencing: %f' % diff_ADF_result[0]) print('p-value after differencing: %f' % diff_ADF_result[1]) data = diff_data return data def arima_model(data): """使用auto_arima函数选择最佳ARIMA模型""" stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=False, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=True) print(stepwise_model.summary()) return stepwise_model def garch_model(data): """计算ARIMA-GARCH组合模型的参数""" model_resid = arima_model(data).resid() model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=1, o=0, q=1) result = model.fit(disp='off') print(result.summary()) if __name__ == '__main__': # 读取Excel数据 ts_data = pd.read_excel('三个-负向标准化-二分.xlsx', usecols=['DATE', 'F4']) # 将数据转换为时间序列 ts_data['DATE'] = pd.to_datetime(ts_data['DATE']) ts_data.set_index('DATE', inplace=True) # ADF检验 ts_data = adf_test(ts_data) # 计算ARIMA-GARCH组合模型的参数 garch_model(ts_data) ``` 优化后的代码更加简洁明了,同时也提高了可读性和可维护性。

相关推荐

用PYTHON编写自1971年7月开始,道琼斯工业股票平均价格指数每周收盘价如表所示(行数据)。 890.19 901.8 888.51 887.78 858.43 850.61 856.02 880.91 908.15 912.75 911 908.22 889.31 893.98 893.91 874.85 852.37 839 840.39 812.94 810.67 816.55 859.59 856.75 873.8 881.17 890.2 910.37 906.68 907.44 906.38 906.68 917.59 917.52 22.79 942.43 939.87 942.88 942.28 940.7 962.6 967.72 963.8 954.17 941.23 941.83 961.54 971.25 961.39 934.45 945.06 944.69 929.03 938.06 922.26 920.45 926.7 951.76 964.18 965.83 959.36 970.05 961.24 947.23 943.03 953.27 945.36 930.46 942.81 946.42 984.12 995.26 1005.57 1025.21 1023.43 1033.19 1027.24 1004.21 1020.02 1047.49 1039.36 1026.19 1003.54 980.81 979.46 979.23 959.89 961.32 972.23 963.05 922.71 951.01 931.07 959.36 963.2 922.19 953.87 927.89 895.17 930.84 893.96 920 888.55 879.82 891.71 870.11 885.99 910.9 936.71 908.87 852.38 871.84 863.49 887.57 898.63 886.36 927.9 947.1 971.25 978.63 963.73 987.06 935.28 908.42 891.33 854 822.25 838.05 815.65 818.73 848.02 880.23 841.48 855.47 859.39 843.94 820.4 820.32 855.99 851.92 878.05 887.83 878.13 846.68 847.54 844.81 859.9 834.64 845.9 850.44 818.84 816.65 802.17 853.72 843.09 815.39 802.41 791.77 787.23 787.94 784.57 752.58(1)检验该序列的平稳性。 (2)对该序列拟合适当的ARIMA模型提取水平信息。 (3)考察该序列是否具有条件异方差属性。如果有条件异方差属性,则拟合适当的条件异方差模型。 (4)使用拟合模型预测该序列未来4周的收盘价及收盘价的95%的置信区间。

最新推荐

recommend-type

基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip

【资源说明】 基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip基于AT89C51单片机的三电梯联动控制系统+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。