用代码实现:def nn_forward_pass(params: Dict[str, torch.Tensor], X: torch.Tensor): """ The first stage of our neural network implementation: Run the forward pass of the network to compute the hidden layer features and classification scores. The network architecture should be: FC layer -> ReLU (hidden) -> FC layer (scores) As a practice, we will NOT allow to use torch.relu and torch.nn ops just for this time (you can use it from A3). Inputs: - params: a dictionary of PyTorch Tensor that store the weights of a model. It should have following keys with shape W1: First layer weights; has shape (D, H) b1: First layer biases; has shape (H,) W2: Second layer weights; has shape (H, C) b2: Second layer biases; has shape (C,) - X: Input data of shape (N, D). Each X[i] is a training sample. Returns a tuple of: - scores: Tensor of shape (N, C) giving the classification scores for X - hidden: Tensor of shape (N, H) giving the hidden layer representation for each input value (after the ReLU). """
时间: 2023-07-16 18:17:11 浏览: 246
pytorch 状态字典:state_dict使用详解
5星 · 资源好评率100%
```python
import torch
def nn_forward_pass(params: Dict[str, torch.Tensor], X: torch.Tensor):
# extract the weights and biases from the dictionary
W1 = params['W1']
b1 = params['b1']
W2 = params['W2']
b2 = params['b2']
# compute the first layer activations
hidden = torch.matmul(X, W1) + b1
# apply the ReLU activation function
hidden = torch.max(torch.zeros_like(hidden), hidden)
# compute the scores
scores = torch.matmul(hidden, W2) + b2
return scores, hidden
```
这个函数实现了一个两层神经网络的前向传播,其中第一层是全连接层,第二层是输出层。对于每个输入值,神经网络首先计算第一层的激活,并将其输入到ReLU激活函数中。然后,它计算第二层的分类得分并返回结果。同时,它还返回第一层的激活表示,即隐藏层。
阅读全文