用代码实现:def nn_forward_pass(params: Dict[str, torch.Tensor], X: torch.Tensor): """ The first stage of our neural network implementation: Run the forward pass of the network to compute the hidden layer features and classification scores. The network architecture should be: FC layer -> ReLU (hidden) -> FC layer (scores) As a practice, we will NOT allow to use torch.relu and torch.nn ops just for this time (you can use it from A3). Inputs: - params: a dictionary of PyTorch Tensor that store the weights of a model. It should have following keys with shape W1: First layer weights; has shape (D, H) b1: First layer biases; has shape (H,) W2: Second layer weights; has shape (H, C) b2: Second layer biases; has shape (C,) - X: Input data of shape (N, D). Each X[i] is a training sample. Returns a tuple of: - scores: Tensor of shape (N, C) giving the classification scores for X - hidden: Tensor of shape (N, H) giving the hidden layer representation for each input value (after the ReLU). """
时间: 2023-07-16 15:17:11 浏览: 230
```python
import torch
def nn_forward_pass(params: Dict[str, torch.Tensor], X: torch.Tensor):
# extract the weights and biases from the dictionary
W1 = params['W1']
b1 = params['b1']
W2 = params['W2']
b2 = params['b2']
# compute the first layer activations
hidden = torch.matmul(X, W1) + b1
# apply the ReLU activation function
hidden = torch.max(torch.zeros_like(hidden), hidden)
# compute the scores
scores = torch.matmul(hidden, W2) + b2
return scores, hidden
```
这个函数实现了一个两层神经网络的前向传播,其中第一层是全连接层,第二层是输出层。对于每个输入值,神经网络首先计算第一层的激活,并将其输入到ReLU激活函数中。然后,它计算第二层的分类得分并返回结果。同时,它还返回第一层的激活表示,即隐藏层。
相关问题
代码: if self.zero_grad_before_forward: self.optimizer.zero_grad() with autocast(dtype=self.precision): loss_dict = self.model(data) if isinstance(loss_dict, torch.Tensor): losses = loss_dict loss_dict = {"total_loss": loss_dict} else: losses = sum(loss_dict.values())。autocast() 函数不支持 dtype 这个关键字参数,请使用 torch.set_default_tensor_type() 函数设置默认数据类型
抱歉,可能是我表述不清楚了。autocast() 函数的确没有 dtype 这个关键字参数,我想表达的是在使用 autocast() 函数时,可以通过设置默认的数据类型来控制数据类型的转换。具体地,可以使用 torch.set_default_dtype() 函数来设置默认的数据类型。示例代码如下:
```python
import torch
# 设置默认的数据类型为半精度浮点数
torch.set_default_dtype(torch.float16)
# 使用 autocast() 函数进行计算
with torch.cuda.amp.autocast():
x = torch.randn(3, 3)
y = torch.randn(3, 3)
z = x + y
# 将结果转换为单精度浮点数
z = z.float()
```
在上面的代码中,我们通过 torch.set_default_dtype() 函数将默认的数据类型设置为半精度浮点数。然后,在使用 autocast() 函数进行计算时,所有的计算都会自动转换为半精度浮点数。最后,我们可以将结果转换为单精度浮点数。这样做的好处是可以在保证计算精度的同时,减少计算所需的存储空间和计算时间。
给下列代码加注释: def merge_accumulate_client_update(self, list_num_proc, list_state_dict, lr): total_num_proc = sum(list_num_proc) # merged_state_dict = dict() dict_keys = list_state_dict[0].keys() for state_dict in list_state_dict[1:]: assert state_dict.keys() == dict_keys # accumulate extra sgrad and remove from state_dict if self.use_adaptive and self.is_adj_round(): prefix = "extra." for state_dict in list_state_dict: del_list = [] for key, param in state_dict.items(): if key[:len(prefix)] == prefix: sgrad_key = key[len(prefix):] mask_0 = self.model.get_mask_by_name(sgrad_key) == 0. dense_sgrad = torch.zeros_like(mask_0, dtype=torch.float) dense_sgrad.masked_scatter_(mask_0, param) # no need to divide by lr self.control.accumulate(sgrad_key, dense_sgrad) del_list.append(key) for del_key in del_list: del state_dict[del_key]
```python
def merge_accumulate_client_update(self, list_num_proc, list_state_dict, lr):
total_num_proc = sum(list_num_proc)
# merged_state_dict = dict()
dict_keys = list_state_dict[0].keys()
# Check if all state dicts have the same keys
for state_dict in list_state_dict[1:]:
assert state_dict.keys() == dict_keys
# accumulate extra sgrad and remove from state_dict
if self.use_adaptive and self.is_adj_round():
prefix = "extra."
for state_dict in list_state_dict:
del_list = []
for key, param in state_dict.items():
# Check if the key starts with 'extra.'
if key[:len(prefix)] == prefix:
# Get the corresponding sgrad key
sgrad_key = key[len(prefix):]
# Create a mask of zeroes
mask_0 = self.model.get_mask_by_name(sgrad_key) == 0.
# Create a dense tensor and fill it with values from param based on the mask
dense_sgrad = torch.zeros_like(mask_0, dtype=torch.float)
dense_sgrad.masked_scatter_(mask_0, param)
# Accumulate the dense sgrad without dividing by lr
self.control.accumulate(sgrad_key, dense_sgrad)
# Add the key to the delete list
del_list.append(key)
# Remove the keys from the state_dict
for del_key in del_list:
del state_dict[del_key]
```
这段代码实现了一个`merge_accumulate_client_update`方法,主要功能是合并和累加`list_state_dict`中的状态字典。以下是对代码的注释:
- `total_num_proc`:所有进程数的总和。
- `dict_keys`:状态字典的键列表。
- 检查所有状态字典是否具有相同的键。
- 如果使用自适应且处于调整轮次,则累加额外的`sgrad`并从状态字典中删除。
- `prefix`:额外`sgrad`的前缀。
- 对于每个状态字典,遍历键和参数。
- 如果键以`prefix`开头,则获取相应的`sgrad`键。
- 创建一个零填充的掩码。
- 创建一个稠密张量,并根据掩码从参数中填充值。
- 累加不除以`lr`的稠密`sgrad`。
- 将键添加到删除列表。
- 从状态字典中删除键。
阅读全文