es 全量同步 增量同步 canal
时间: 2023-05-13 19:00:17 浏览: 886
ES是一款开源的搜索引擎,可以高效地存储、检索和分析大规模数据。在使用ES时,同步数据是一个非常重要的问题,因为数据的实时同步可以确保数据的时效性和准确性。其中,ES的全量同步、增量同步以及Canal都是同步数据的工具。
全量同步是指将整个数据库的数据都进行同步,包括新增、修改和删除等。这个过程需要耗费大量的时间和资源,且会对数据库造成一定的压力。但是,全量同步可以确保数据的完整性,是一个必要的步骤。
增量同步是指将数据库的增量数据进行同步,即只同步发生改变的数据。这能够有效地减少数据库的压力,加快同步速度,并且可以提高同步数据的时效性。增量同步需要定时扫描数据库,找出变化的数据,将其同步到ES。
Canal是阿里巴巴开源的数据同步工具,它通过解析数据库的binlog日志来实现增量同步,从而实现数据的实时同步。Canal的优点是可以实时同步数据,而且对数据库的压力比较小。Canal可以支持的数据库有MySQL、Oracle、Redis等。
总而言之,ES的全量同步、增量同步、以及Canal都是同步数据的重要工具。根据不同的需求和场景,可以选择适合的同步工具,确保数据的及时性和准确性。
相关问题
如何利用Canal实现MySQL与Elasticsearch之间的实时增量同步和全量同步,以及在配置过程中需要注意哪些技术细节?
要实现MySQL与Elasticsearch之间的实时增量同步和全量同步,首先需要了解Canal的工作机制和Elasticsearch的同步要求。利用Canal实现MySQL与Elasticsearch之间的实时增量同步,关键在于配置Canal监听MySQL的binlog日志,然后将解析出的数据变更事件实时推送到Elasticsearch。全量同步则需要通过Java Web服务编写相应的数据迁移脚本,从MySQL导出数据并导入到Elasticsearch中。
参考资源链接:[canal实现mysql与elasticsearch实时增量与全量同步方案](https://wenku.csdn.net/doc/b856sneffb?spm=1055.2569.3001.10343)
在配置过程中,有几个技术细节需要特别注意:
1. 确保MySQL的binlog格式设置正确,推荐使用ROW格式,因为它能够提供最详细的变更记录。
2. Canal需要以独立的服务运行,需要配置相应的内存和连接参数,以确保其稳定运行。
3. 在同步数据之前,需要在Elasticsearch中预先定义好索引结构和映射,以适应不同的数据同步需求。
4. 对于全量同步,要考虑数据迁移过程中对MySQL性能的影响,可能需要分批处理或者在低峰时段执行。
5. 在增量同步中,要注意过滤不需要同步的数据变更事件,以减少不必要的网络传输和处理开销。
6. 为了保证数据的一致性和可靠性,建议在Canal客户端与Elasticsearch之间加入事务处理机制,确保每次变更都能被完整同步。
实际操作中,可以通过阅读《canal实现mysql与elasticsearch实时增量与全量同步方案》一书来获取详细的操作步骤和解决方案。这本书提供了从环境搭建、配置文件编写到数据同步脚本实现的完整指导,是一份非常实用的资源。
参考资源链接:[canal实现mysql与elasticsearch实时增量与全量同步方案](https://wenku.csdn.net/doc/b856sneffb?spm=1055.2569.3001.10343)
springboot整合easy-es和canbal、kafka实现mysql数据同步,支持数据全量和增量同步
Spring Boot 整合 Easy-ES、Canal 和 Kafka 可以实现 MySQL 数据的全量和增量同步。下面简单介绍一下具体步骤:
1. 集成 Easy-ES
(1)在 pom.xml 中添加 Easy-ES 依赖:
```
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>easy-es-spring-boot-starter</artifactId>
<version>2.3.0</version>
</dependency>
```
(2)在 application.yml 中配置 Easy-ES:
```
spring:
elasticsearch:
rest:
uris: http://127.0.0.1:9200
easy-es:
enabled: true
index-prefix: my_index
refresh-interval: 5s
```
2. 集成 Canal
(1)在 pom.xml 中添加 Canal 依赖:
```
<dependency>
<groupId>com.alibaba.otter</groupId>
<artifactId>canal.client</artifactId>
<version>1.1.4</version>
</dependency>
```
(2)在 application.yml 中配置 Canal:
```
canal:
client:
# canal server的ip地址和端口号
servers: 127.0.0.1:11111
# 监听的实例名称,多个实例用逗号分隔
instance: my_instance
# 连接 Canal server 的用户名和密码
username:
password:
destination:
# 数据源名称
schema: my_db
# 数据库连接信息
url: jdbc:mysql://127.0.0.1:3306/my_db?serverTimezone=Asia/Shanghai&useUnicode=true&characterEncoding=utf-8
username: root
password: root
filter:
# 监听表的正则表达式,多个表用逗号分隔
include: .*\\..*
```
3. 集成 Kafka
(1)在 pom.xml 中添加 Kafka 依赖:
```
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.5.4.RELEASE</version>
</dependency>
```
(2)在 application.yml 中配置 Kafka:
```
spring:
kafka:
bootstrap-servers: 127.0.0.1:9092
producer:
retries: 0
consumer:
group-id: my_group_id
auto-offset-reset: earliest
properties:
max.poll.interval.ms: 600000
```
4. 实现数据同步
(1)全量同步
全量同步可以通过 Easy-ES 的 `com.alibaba.easysearch.indexbuilder.IndexBuilderFactory` 类来实现。在应用启动时,通过监听 `ApplicationReadyEvent` 事件,获取 MySQL 数据并调用 `com.alibaba.easysearch.indexbuilder.IndexBuilderFactory.buildFullIndex()` 方法来创建索引,具体代码如下:
```
@Component
public class FullIndexBuilder implements ApplicationListener<ApplicationReadyEvent> {
@Autowired
private IndexBuilderFactory indexBuilderFactory;
@Override
public void onApplicationEvent(ApplicationReadyEvent applicationReadyEvent) {
// 获取 MySQL 数据并创建索引
indexBuilderFactory.buildFullIndex();
}
}
```
(2)增量同步
增量同步可以通过 Canal 和 Kafka 实现。Canal 监听 MySQL 数据库变化,将变化信息发送到 Kafka 中,然后在消费者中获取变化信息并更新索引。
首先创建一个 Canal 客户端:
```
@Component
public class CanalClient {
private static final Logger logger = LoggerFactory.getLogger(CanalClient.class);
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@Value("${canal.client.servers}")
private String servers;
@Value("${canal.client.instance}")
private String instance;
@PostConstruct
public void init() {
CanalConnector connector = CanalConnectors.newClusterConnector(servers, instance, "", "");
int batchSize = 1000;
try {
connector.connect();
connector.subscribe(".*\\..*");
connector.rollback();
while (true) {
Message message = connector.getWithoutAck(batchSize);
long batchId = message.getId();
if (batchId == -1 || message.getEntries().isEmpty()) {
continue;
}
List<String> messages = new ArrayList<>();
for (CanalEntry.Entry entry : message.getEntries()) {
if (entry.getEntryType() == CanalEntry.EntryType.ROWDATA) {
RowChange rowChange;
try {
rowChange = RowChange.parseFrom(entry.getStoreValue());
} catch (Exception e) {
throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(), e);
}
String tableName = entry.getHeader().getTableName();
EventType eventType = rowChange.getEventType();
for (CanalEntry.RowData rowData : rowChange.getRowDatasList()) {
String messageJson = JSON.toJSONString(rowData.getAfterColumnsList()
.stream()
.collect(Collectors.toMap(CanalEntry.Column::getName, CanalEntry.Column::getValue)));
messages.add(tableName + "|" + eventType + "|" + messageJson);
}
}
}
if (!messages.isEmpty()) {
kafkaTemplate.send("my_topic", StringUtils.join(messages, "\n"));
}
connector.ack(batchId);
}
} catch (Exception e) {
logger.error("CanalClient error", e);
} finally {
connector.disconnect();
}
}
}
```
然后创建一个 Kafka 消费者,获取变化信息并更新索引:
```
@Component
public class IncrementIndexBuilder {
private static final Logger logger = LoggerFactory.getLogger(IncrementIndexBuilder.class);
@Autowired
private IndexBuilderFactory indexBuilderFactory;
@KafkaListener(topics = "my_topic")
public void listen(ConsumerRecord<String, String> record) {
String[] fields = StringUtils.split(record.value(), "|");
String tableName = fields[0];
String eventType = fields[1];
String messageJson = fields[2];
try {
Map<String, Object> message = JSON.parseObject(messageJson, new TypeReference<Map<String, Object>>() {});
if ("INSERT".equals(eventType)) {
indexBuilderFactory.buildIndex(tableName, message);
} else if ("UPDATE".equals(eventType)) {
indexBuilderFactory.updateIndex(tableName, message);
} else if ("DELETE".equals(eventType)) {
indexBuilderFactory.deleteIndex(tableName, message);
}
} catch (Exception e) {
logger.error("IncrementIndexBuilder error", e);
}
}
}
```
到此为止,我们就实现了 Spring Boot 整合 Easy-ES、Canal 和 Kafka 实现 MySQL 数据的全量和增量同步。
阅读全文