DQN求解tsp问题代码
时间: 2023-11-13 07:05:56 浏览: 159
求解tsp问题
4星 · 用户满意度95%
以下是使用DQN算法求解TSP问题的Python代码:
```python
import numpy as np
import tensorflow as tf
import random
import math
# 定义神经网络
class Model:
def __init__(self, n_cities, n_neurons):
self.n_cities = n_cities
self.n_neurons = n_neurons
self.graph = tf.Graph()
with self.graph.as_default():
self.input = tf.placeholder(tf.float32, shape=[None, n_cities, 2])
self.hidden = tf.layers.dense(tf.reshape(self.input, [-1, n_cities * 2]), n_neurons, activation=tf.nn.relu)
self.logits = tf.layers.dense(self.hidden, n_cities)
self.output = tf.nn.softmax(self.logits)
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=self.output, logits=self.logits))
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
self.init = tf.global_variables_initializer()
self.saver = tf.train.Saver()
def predict(self, session, X):
return session.run(self.output, feed_dict={self.input: X})
def train(self, session, X, Y):
session.run(self.optimizer, feed_dict={self.input: X, self.output: Y})
def save(self, session, path):
self.saver.save(session, path)
def load(self, session, path):
self.saver.restore(session, path)
# 定义DQN算法
class DQN:
def __init__(self, n_cities, n_neurons, n_episodes, batch_size, gamma, epsilon, epsilon_min, epsilon_decay, memory_size):
self.n_cities = n_cities
self.n_neurons = n_neurons
self.n_episodes = n_episodes
self.batch_size = batch_size
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.memory_size = memory_size
self.memory = []
self.model = Model(n_cities, n_neurons)
self.target_model = Model(n_cities, n_neurons)
self.sess = tf.Session(graph=self.model.graph)
self.sess.run(self.model.init)
self.sess.run(self.target_model.init)
self.update_target_model()
def update_target_model(self):
self.target_model.load(self.sess, tf.train.latest_checkpoint('./'))
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
if len(self.memory) > self.memory_size:
self.memory.pop(0)
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.randint(self.n_cities)
else:
return np.argmax(self.model.predict(self.sess, np.array([state])))
def replay(self):
if len(self.memory) < self.batch_size:
return
minibatch = random.sample(self.memory, self.batch_size)
X = np.zeros((self.batch_size, self.n_cities, 2))
Y = np.zeros((self.batch_size, self.n_cities))
for i in range(self.batch_size):
state, action, reward, next_state, done = minibatch[i]
target = self.model.predict(self.sess, np.array([state]))[0]
if done:
target[action] = reward
else:
Q_next = np.max(self.target_model.predict(self.sess, np.array([next_state]))[0])
target[action] = reward + self.gamma * Q_next
X[i] = state
Y[i] = target
self.model.train(self.sess, X, Y)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def run(self, cities):
state = np.array(cities)
total_reward = 0
done = False
while not done:
action = self.act(state)
next_state, reward, done = self.step(state, action)
self.remember(state, action, reward, next_state, done)
state = next_state
total_reward += reward
self.replay()
return total_reward
def step(self, state, action):
next_state = np.copy(state)
next_state[:, 0], next_state[:, action] = next_state[:, action], next_state[:, 0]
reward = -np.sum(np.sqrt(np.sum(np.diff(next_state, axis=0) ** 2, axis=1)))
done = np.array_equal(next_state[:, 0], np.arange(self.n_cities))
return next_state, reward, done
def train(self, cities):
for episode in range(self.n_episodes):
random.shuffle(cities)
reward = self.run(cities)
print('Episode: {}, Reward: {}, Epsilon: {}'.format(episode, reward, self.epsilon))
if episode % 10 == 0:
self.update_target_model()
self.model.save(self.sess, './model.ckpt')
# 定义TSP问题
class TSP:
def __init__(self, n_cities):
self.n_cities = n_cities
self.cities = np.random.rand(n_cities, 2)
def distance(self, i, j):
return np.sqrt(np.sum((self.cities[i] - self.cities[j]) ** 2))
def reward(self, tour):
return -np.sum([self.distance(tour[i], tour[i + 1]) for i in range(self.n_cities - 1)]) - self.distance(tour[0], tour[-1])
def optimal_tour(self):
return np.argsort([self.distance(i, j) for i in range(self.n_cities) for j in range(i + 1, self.n_cities)])[:self.n_cities]
# 运行DQN算法
n_cities = 10
n_neurons = 128
n_episodes = 1000
batch_size = 32
gamma = 0.99
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.995
memory_size = 100000
tsp = TSP(n_cities)
dqn = DQN(n_cities, n_neurons, n_episodes, batch_size, gamma, epsilon, epsilon_min, epsilon_decay, memory_size)
dqn.train(tsp.optimal_tour())
```
阅读全文