如果输入x是多个表格,输出y是一个表格数据,改写上述代码
时间: 2024-03-18 18:38:51 浏览: 83
如果输入是多个表格,输出是一个表格数据,我们可以将每个表格数据看作一个时间序列数据集,然后对每个表格数据抽取一个代表性的Shapelet,并将这些Shapelet组合成一个新的表格数据。以下是改写后的代码示例:
```
import numpy as np
def distance(x, y):
# 计算两个时间序列之间的距离
return np.sqrt(np.sum((x - y) ** 2))
def information_gain(X, y, candidate):
# 计算使用候选Shapelet进行分割后的信息增益
X_left = []
X_right = []
for i in range(len(X)):
if distance(X[i][:len(candidate)], candidate) < distance(X[i][-len(candidate):], candidate):
X_left.append(X[i])
else:
X_right.append(X[i])
y_left = y[:len(X_left)]
y_right = y[len(X_left):]
H_y = entropy(y)
H_y_left = entropy(y_left)
H_y_right = entropy(y_right)
IG = H_y - len(X_left) / len(X) * H_y_left - len(X_right) / len(X) * H_y_right
return IG
def entropy(y):
# 计算给定类标签的熵
unique_labels, counts_labels = np.unique(y, return_counts=True)
probabilities = counts_labels / len(y)
entropy = -np.sum(probabilities * np.log2(probabilities))
return entropy
def select_shapelet(X, y, max_length):
# 从X中选择一个最佳的Shapelet
best_gain = 0
best_shapelet = None
for length in range(1, max_length + 1):
for i in range(len(X)):
candidate = X[i][:length]
gain = information_gain(X, y, candidate)
if gain > best_gain:
best_gain = gain
best_shapelet = candidate
return best_shapelet
def extract_shapelets(X, y, max_length):
# 从多个表格数据中抽取代表性的Shapelet
shapelets = []
for i in range(X.shape[1]):
xi = X[:, i]
yi = y
shapelet = select_shapelet(xi, yi, max_length)
shapelets.append(shapelet)
return np.array(shapelets)
def transform(X, shapelets):
# 将多个表格数据转换为一个新的表格数据
new_X = []
for i in range(X.shape[0]):
xi = X[i]
row = []
for j in range(len(shapelets)):
shapelet = shapelets[j]
distance_left = distance(xi[:len(shapelet)], shapelet)
distance_right = distance(xi[-len(shapelet):], shapelet)
row.append(distance_left - distance_right)
new_X.append(row)
return np.array(new_X)
# 示例用法
X1 = np.random.rand(100, 10)
X2 = np.random.rand(100, 20)
y = np.random.randint(0, 2, size=100)
shapelets = extract_shapelets(np.vstack([X1, X2]), y, max_length=5)
new_X1 = transform(X1, shapelets)
new_X2 = transform(X2, shapelets)
new_X = np.hstack([new_X1, new_X2])
```
这个代码将`extract_shapelets`函数用于每个表格数据,抽取一个代表性的Shapelet。然后,它使用`transform`函数将每个表格数据转换为一个新的行向量,其中每个元素表示该表格数据中对应Shapelet的距离差值。最后,它将所有新的行向量组合成一个新的表格数据。
阅读全文