matlab基于粗糙集理论的属性约简算法代码
时间: 2023-09-17 14:06:29 浏览: 265
粗糙集属性约简代码
5星 · 资源好评率100%
以下是一个基于粗糙集理论的属性约简算法的MATLAB代码示例:
```
function [reducted_features, accuracy] = rough_set(attribute_matrix, decision_matrix)
% attribute_matrix - 属性矩阵,每一列代表一个属性
% decision_matrix - 决策矩阵,每一行代表一个样本的决策
% reducted_features - 约简后的属性集合
% accuracy - 约简后的分类准确率
[num_samples, num_features] = size(attribute_matrix);
num_decisions = length(unique(decision_matrix));
% 初始化属性重要度向量
importance_vector = zeros(1, num_features);
% 计算属性重要度
for i = 1:num_features
% 计算属性i的决策关联度
positive_samples = find(attribute_matrix(:, i) == 1);
negative_samples = find(attribute_matrix(:, i) == 0);
num_positive_samples = length(intersect(positive_samples, find(decision_matrix == 1)));
num_negative_samples = length(intersect(negative_samples, find(decision_matrix == 0)));
positive_ratio = num_positive_samples / length(positive_samples);
negative_ratio = num_negative_samples / length(negative_samples);
decision_association = abs(positive_ratio - negative_ratio);
% 计算属性i的条件熵
conditional_entropy = 0;
for j = 1:num_decisions
decision_samples = find(decision_matrix == j);
num_decision_samples = length(decision_samples);
num_decision_and_attribute_samples = length(intersect(decision_samples, positive_samples));
if num_decision_and_attribute_samples == 0
continue;
end
decision_attribute_ratio = num_decision_and_attribute_samples / num_decision_samples;
conditional_entropy = conditional_entropy - decision_attribute_ratio * log2(decision_attribute_ratio);
end
% 计算属性i的重要度
importance_vector(i) = decision_association * conditional_entropy;
end
% 对属性重要度进行排序,并选择前k个作为约简后的属性集合
[~, indices] = sort(importance_vector, 'descend');
reducted_features = indices(1:round(num_features / 2));
% 计算约简后的分类准确率
attribute_matrix_reduced = attribute_matrix(:, reducted_features);
decision_matrix_reduced = decision_matrix;
classifier = fitcknn(attribute_matrix_reduced, decision_matrix_reduced, 'NumNeighbors', 3);
accuracy = sum(predict(classifier, attribute_matrix_reduced) == decision_matrix_reduced) / num_samples;
end
```
该算法的思路是计算每个属性的重要度,然后按重要度从高到低排序选择一部分属性作为约简后的属性集合。在本例中,我们选择了重要度前50%的属性作为约简后的属性集合,并使用K近邻分类器计算了约简后的分类准确率。
阅读全文