matlab碎纸片的拼接复原问题
时间: 2023-08-24 09:40:07 浏览: 76
基于Matlab的碎纸片的自动拼接复原技术.doc
碎纸片的拼接复原问题是一个经典的图像拼接问题,可以使用Matlab进行求解。
以下是一个简单的Matlab程序,用于将碎纸片图像拼接成完整的图像:
```matlab
% 读入碎纸片图像
imgDir = 'path/to/images'; % 图像文件夹路径
imgFiles = dir(fullfile(imgDir, '*.jpg')); % 读取所有jpg格式的图像
numImgs = length(imgFiles); % 碎片图像数量
% 读入每个碎片图像并保存到一个cell数组中
for i = 1:numImgs
img = imread(fullfile(imgDir, imgFiles(i).name));
imCell{i} = img;
end
% 使用SIFT算法提取每个图像的关键点和描述符
for i = 1:numImgs
[f, d] = vl_sift(single(rgb2gray(imCell{i})));
frames{i} = f;
descriptors{i} = d;
end
% 计算每对图像间的相似性得分
scores = zeros(numImgs);
for i = 1:numImgs
for j = 1:numImgs
if i == j
continue;
end
matches = vl_ubcmatch(descriptors{i}, descriptors{j});
scores(i, j) = size(matches, 2);
end
end
% 使用贪心算法将碎片图像拼接成一个完整的图像
usedImgs = zeros(1, numImgs);
fullImg = imCell{1};
usedImgs(1) = 1;
while sum(usedImgs) < numImgs
bestScore = -1;
bestImg = 0;
bestTransform = zeros(3, 3);
for i = 1:numImgs
if usedImgs(i)
continue;
end
for j = 1:numImgs
if i == j || ~usedImgs(j)
continue;
end
T = getTransform(frames{j}, descriptors{j}, frames{i}, descriptors{i});
score = getScore(imCell{j}, imCell{i}, T);
if score > bestScore
bestScore = score;
bestImg = i;
bestTransform = T;
end
end
end
usedImgs(bestImg) = 1;
fullImg = mergeImages(fullImg, imCell{bestImg}, bestTransform);
end
% 显示拼接后的完整图像
imshow(fullImg);
% 辅助函数
function T = getTransform(frames1, descriptors1, frames2, descriptors2)
matches = vl_ubcmatch(descriptors1, descriptors2);
numMatches = size(matches, 2);
p1 = frames1(1:2, matches(1,:));
p2 = frames2(1:2, matches(2,:));
T = fitAffineTransform(p1, p2);
end
function T = fitAffineTransform(p1, p2)
x1 = p1(1,:); y1 = p1(2,:);
x2 = p2(1,:); y2 = p2(2,:);
n = size(x1,2);
A = zeros(2*n, 6);
b = zeros(2*n, 1);
for i = 1:n
A(i,:) = [x1(i), y1(i), 0, 0, 1, 0];
A(i+n,:) = [0, 0, x1(i), y1(i), 0, 1];
b(i) = x2(i);
b(i+n) = y2(i);
end
x = A\b;
T = [x(1), x(2), x(5); x(3), x(4), x(6); 0, 0, 1];
end
function score = getScore(img1, img2, T)
img2warped = imwarp(img2, affine2d(T));
mask1 = imbinarize(rgb2gray(img1), 'adaptive');
mask2 = imbinarize(rgb2gray(img2warped), 'adaptive');
overlap = mask1 & mask2;
score = sum(overlap(:)) / sum(mask1(:));
end
function merged = mergeImages(img1, img2, T)
[H, W, ~] = size(img1);
[~, ~, ~] = size(img2);
img2warped = imwarp(img2, affine2d(T));
merged = zeros(H, W, 3, 'uint8');
mask1 = imbinarize(rgb2gray(img1), 'adaptive');
mask2 = imbinarize(rgb2gray(img2warped), 'adaptive');
overlap = mask1 & mask2;
merged(repmat(overlap, [1, 1, 3])) = img2warped(repmat(overlap, [1, 1, 3]));
merged(repmat(~overlap, [1, 1, 3])) = img1(repmat(~overlap, [1, 1, 3]));
end
```
此程序实现了以下步骤:
1. 读入碎纸片图像并保存到一个cell数组中;
2. 使用SIFT算法提取每个图像的关键点和描述符;
3. 计算每对图像间的相似性得分;
4. 使用贪心算法将碎片图像拼接成一个完整的图像;
5. 显示拼接后的完整图像。
需要注意的是,此程序仅实现了最基本的拼接算法,可能无法处理复杂的碎纸片图像。可以根据具体情况对程序进行优化和改进。
阅读全文