%PID Controller with changing integration rate clear all; close all; %Big time delay Plant ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; error_1=0;error_2=0; ei=0; for k=1:1:200 time(k)=k*ts; yd(k)=1.0; %Step Signal %Linear model y(k)=-den(2)*y_1+num(2)*u_5; error(k)=yd(k)-y(k); kp=0.45;kd=12;ki=0.0048; A=0.4;B=0.6; %T type integration ei=ei+(error(k)+error_1)/2*ts; M=2; if M==1 %Changing integration rate if abs(error(k))<=B f(k)=1; elseif abs(error(k))>B&abs(error(k))<=A+B f(k)=(A-abs(error(k))+B)/A; else f(k)=0; end elseif M==2 %Not changing integration rate f(k)=1; end u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*f(k)*ei; if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end %Return of PID parameters u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=y(k); error_2=error_1; error_1=error(k); end figure(1); plot(time,yd,'r',time,y,'k:','linewidth',2); xlabel('time(s)');ylabel('yd,y'); legend('Ideal position signal','Position tracking'); figure(2); plot(time,f,'r','linewidth',2); xlabel('time(s)');ylabel('Integration rate f');详细注释一下这段代码

时间: 2023-12-07 14:04:57 浏览: 190
这段代码是一个使用PID控制器的闭环控制系统,用于跟踪一个步进信号。接下来对代码进行详细注释: 首先,导入所需的库和清空变量: ```matlab clear all; close all; ``` 然后,定义系统模型,使用输入延迟80和60的一阶传递函数: ```matlab ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); ``` 接下来,定义初始化变量: ```matlab u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; error_1=0;error_2=0; ei=0; ``` 然后,开始进行控制循环: ```matlab for k=1:1:200 time(k)=k*ts; yd(k)=1.0; %Step Signal %Linear model y(k)=-den(2)*y_1+num(2)*u_5; error(k)=yd(k)-y(k); %PID Parameters kp=0.45;kd=12;ki=0.0048; A=0.4;B=0.6; %T type integration ei=ei+(error(k)+error_1)/2*ts; %Changing integration rate M=2; if M==1 if abs(error(k))<=B f(k)=1; elseif abs(error(k))>B&abs(error(k))<=A+B f(k)=(A-abs(error(k))+B)/A; else f(k)=0; end %Not changing integration rate elseif M==2 f(k)=1; end %PID Control u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*f(k)*ei; %Limit output if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end %Return of PID parameters u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=y(k); error_2=error_1; error_1=error(k); end ``` 循环中,首先计算当前的时间和期望输出信号`yd`。然后使用线性模型计算当前的实际输出信号`y`和误差`error`。接下来,定义PID控制器的参数,并使用T型积分计算当前积分误差`ei`。然后根据选择的积分变化模型,计算当前的积分率`f`。最后,使用PID控制计算当前的控制量`u`,并限制在-10到10之间。最后,更新历史参数并进行下一次循环。 最后,使用两个图形窗口绘制输出信号和积分率变化: ```matlab figure(1); plot(time,yd,'r',time,y,'k:','linewidth',2); xlabel('time(s)');ylabel('yd,y'); legend('Ideal position signal','Position tracking'); figure(2); plot(time,f,'r','linewidth',2); xlabel('time(s)');ylabel('Integration rate f'); ``` 第一个图形绘制期望输出信号和实际跟踪信号,第二个图形绘制积分率变化。
阅读全文

相关推荐

大家在看

recommend-type

LITE-ON FW spec PS-2801-9L rev A01_20161118.pdf

LITE-ON FW spec PS-2801-9L
recommend-type

Basler GigE中文在指导手册

Basler GigE中文在指导手册,非常简单有效就可设定完毕。
recommend-type

独家2006-2021共16年280+地级市绿色全要素生产率与分解项、原始数据,多种方法!

(写在前面:千呼万唤始出来,我终于更新了!!!泪目啊!继全网首发2005-202 1年省际绿色全要素生产率后,我终于更新了全网最新的2021年的地级市绿色全要素生 产率,几千个数据值,超级全面!并且本次我未发布两个帖子拆分出售,直接在此帖子中一 并分享给大家链接!请按需购买!) 本数据集为2006-2021共计16年间我国2 80+地级市的绿色全要素生产率平衡面板数据(包括累乘后的GTFP结果与分解项EC 、TC),同时提供四种方法的测算结果,共计4000+观测值,近两万个观测点,原始 数据链接这次也附在下方了。 首先是几点说明: ①我同时提供4种测算方法的结果(包 括分解项),均包含于测算结果文档。 ②测算结果与原始数据均为平衡面板数据,经过多 重校对,准确无误;可以直接用于Stata等软件进行回归分析。 ③测算结果中每一种 方法的第一列数据为“指数”即为GML指数,本次测算不采用ML等较为传统的方法(我 认为其不够创新)。 ④地级市数量为284个,原始数据未进行任何插值,均为一手整理 的真实数据。 ⑤(原始数据指标简介)投入向量为四项L:年末就业人数,K:资本存量 (参考复旦大学张
recommend-type

TS流结构分析(PAT和PMT).doc

分析数字电视中ts的结构和组成,并对PAT表,PMT表进行详细的分析,包含详细的解析代码,叫你如何解析TS流中的数据
recommend-type

2017年青年科学基金—填报说明、撰写提纲及模板.

2017年青年科学基金(官方模板)填报说明、撰写提纲及模板

最新推荐

recommend-type

西门子 博途 PID SCL 源代码

西门子博途中的PID控制是自动化工程中常见的反馈控制算法,用于自动调整系统参数以使其达到期望的性能。在SCL(Structured Control Language)编程环境下,用户可以编写自定义的PID功能块(FUNCTION_BLOCK)来实现这...
recommend-type

python实现PID算法及测试的例子

PID(比例-积分-微分)控制器是一种广泛应用的自动控制算法,它通过组合比例、积分和微分项来调整系统的响应。在Python中实现PID算法,可以用于各种控制任务,如温度控制、机器人路径规划等。下面将详细介绍如何在...
recommend-type

PID库(Arduino PID Library)使用说明

PID库是专门为Arduino平台设计的一种控制算法库,用于实现比例积分微分(PID)控制器。PID控制器在自动化和控制系统中广泛使用,它通过调整系统的输出来减小输入与设定值之间的误差,从而达到精确控制的目的。 `PID()...
recommend-type

智能车PID调节的经验方法

智能车在比赛中往往需要精准的控制系统来确保稳定性和速度,其中PID(比例-积分-微分)控制器是最常用的工具之一。PID控制器通过调整三个参数——比例系数Kp、积分时间常数Ti和微分时间常数Td,实现对系统的精确控制...
recommend-type

解决MySQL因不能创建 PID 导致无法启动的方法

在MySQL服务器启动过程中遇到的问题通常是由于多种原因引起的,如配置错误、权限问题、系统资源不足或是PID(进程ID)文件创建失败等。针对标题和描述中提到的“MySQL因不能创建PID导致无法启动”的问题,我们可以...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。