optimizer = CMA(mean=np.mean(bounds, axis=1), sigma=1, bounds=bounds, seed=0)
时间: 2023-08-24 22:08:39 浏览: 83
解决Keras TensorFlow 混编中 trainable=False设置无效问题
根据你之前提供的错误信息,这里的 `CMA` 对象可能是指 `cma.CMAEvolutionStrategy` 类,它是一个非常流行的 Python 优化库 `cmaes` 的一部分。
在你的代码中,你使用了 `CMA` 对象来实例化一个 `CMAEvolutionStrategy` 对象,并将其赋值给 `optimizer` 变量。下面是这段代码的一些解释:
- `mean=np.mean(bounds, axis=1)`:这个参数设置了优化搜索空间的中心点。在这里,我们使用 `bounds` 中每个维度的中点作为搜索空间的中心点。
- `sigma=1`:这个参数设置了初始搜索步长的大小。这里我们将其设置为 1。
- `bounds=bounds`:这个参数设置了搜索空间的边界。在这里,我们使用之前定义的 `bounds` 变量作为搜索空间的边界。
- `seed=0`:这个参数设置了随机数生成器的种子。在这里,我们将其设置为 0。
最终,这个 `CMAEvolutionStrategy` 对象将用于执行优化算法,搜索最优解。
阅读全文