GBRT算法回归的原理流程
时间: 2023-11-25 12:12:19 浏览: 377
GBRT(Gradient Boosted Regression Trees)算法是一种集成学习算法,它通过集成多个决策树来进行回归分析,其基本原理流程如下:
1. 初始化模型:将目标函数初始化为一个常数,通常取目标变量的均值作为初始值。
2. 拟合树模型:使用基于决策树的回归算法(如CART算法)拟合一棵回归树模型。
3. 计算残差:将目标变量与当前模型预测值的差值作为残差,用于后续模型的训练。
4. 训练新模型:使用与第二步相同的算法,基于残差训练出一棵新的回归树模型。
5. 更新模型:将新模型加入到原有模型中,得到更加精确的预测结果。
6. 重复迭代:重复第三至第五步,直到达到预设的迭代次数或模型误差满足要求。
GBRT算法的核心思想是通过不断地迭代学习,将多个弱分类器组合成一个强分类器,从而提高预测精度。在每次迭代中,GBRT算法通过优化损失函数来选择最佳的决策树模型,并不断更新模型,直到达到预设的目标。
阅读全文