block_clamp
时间: 2023-12-19 12:07:39 浏览: 81
`block_clamp`是一个函数,用于限制输入张量的值在一个指定的范围内。它可以用于限制权重或梯度的范围,以防止它们过大或过小。它的原型如下:
```python
torch.nn.functional.block_clamp(input, min_val, max_val, inplace=False)
```
其中,`input`指输入张量,`min_val`和`max_val`分别是张量允许的最小值和最大值。当`inplace`为True时,函数将直接修改输入张量,否则将返回一个新张量。函数的具体实现如下:
```python
def block_clamp(input, min_val, max_val, inplace=False):
if inplace:
input.clamp_(min_val, max_val)
return input
else:
return torch.clamp(input, min_val, max_val)
```
该函数使用了PyTorch中的clamp函数,即将张量的值限制在一个范围内。在`inplace`为True时,函数直接修改原始张量,而在`inplace`为False时,函数返回一个新张量。
相关问题
class DropBlock_Ske(nn.Module): def __init__(self, num_point, block_size=7): super(DropBlock_Ske, self).__init__() self.keep_prob = 0.0 self.block_size = block_size self.num_point = num_point self.fc_1 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.fc_2 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.sigmoid = nn.Sigmoid() def forward(self, input, keep_prob, A): # n,c,t,v self.keep_prob = keep_prob if not self.training or self.keep_prob == 1: return input n, c, t, v = input.size() input_attention_mean = torch.mean(torch.mean(input, dim=2), dim=1).detach() # 32 25 input_attention_max = torch.max(input, dim=2)[0].detach() input_attention_max = torch.max(input_attention_max, dim=1)[0] # 32 25 avg_out = self.fc_1(input_attention_mean) max_out = self.fc_2(input_attention_max) out = avg_out + max_out input_attention_out = self.sigmoid(out).view(n, 1, 1, self.num_point) input_a = input * input_attention_out input_abs = torch.mean(torch.mean( torch.abs(input_a), dim=2), dim=1).detach() input_abs = input_abs / torch.sum(input_abs) * input_abs.numel() gamma = 0.024 M_seed = torch.bernoulli(torch.clamp( input_abs * gamma, min=0, max=1.0)).to(device=input.device, dtype=input.dtype) M = torch.matmul(M_seed, A) M[M > 0.001] = 1.0 M[M < 0.5] = 0.0 mask = (1 - M).view(n, 1, 1, self.num_point) return input * mask * mask.numel() / mask.sum()
这段代码定义了一个名为DropBlock_Ske的PyTorch模型类。该类继承自nn.Module基类,并实现了模型的前向传播逻辑。
在初始化方法中,定义了一些模型的属性,包括keep_prob、block_size、num_point等。然后,定义了两个全连接网络层fc_1和fc_2,并使用nn.Sequential组织网络层的结构。最后,使用nn.Sigmoid定义了一个Sigmoid激活函数。
在前向传播方法中,首先根据输入的keep_prob值判断是否需要执行DropBlock操作,如果不需要则直接返回输入。接着,获取输入张量的形状,并计算出输入张量的均值和最大值。通过两个全连接网络层对均值和最大值进行处理,将处理结果相加得到out。然后,使用Sigmoid激活函数对out进行处理,得到一个形状为(n, 1, 1, num_point)的张量input_attention_out。将input_attention_out与输入张量input相乘得到input_a。
接下来,计算input_a的绝对值的平均值,并将其除以总数并乘以元素个数,得到一个形状为(n,)的张量input_abs。定义了一个gamma值,并将input_abs与gamma相乘并经过torch.clamp函数进行限制,再经过torch.bernoulli函数进行伯努利采样,得到一个形状与输入相同的二值张量M_seed。使用torch.matmul函数将M_seed与A矩阵相乘得到M。
然后,将M中大于0.001的元素赋值为1.0,小于0.5的元素赋值为0.0。接着,将1减去M得到mask,将mask乘以输入张量input,并除以mask中的元素个数与总和,得到最终的输出张量。
这个模型类实现了DropBlock_Ske操作,其中包含了一些全连接网络层和一些基于概率的操作。它的具体功能和用途可能需要根据上下文来确定。
An unexpected error occurred! {:error=>#<ArgumentError: Setting "" hasn't been registered>, :backtrace=>["/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:37:in `get_setting'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:70:in `set_value'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:89:in `block in merge'", "org/jruby/RubyHash.java:1343:in `each'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:89:in `merge'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:138:in `validate_all'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/runner.rb:279:in `execute'", "/opt/module/logstash-6.3.2/vendor/bundle/jruby/2.3.0/gems/clamp-0.6.5/lib/clamp/command.rb:67:in `run'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/runner.rb:238:in `run'", "/opt/module/logstash-6.3.2/vendor/bundle/jruby/2.3.0/gems/clamp-0.6.5/lib/clamp/command.rb:132:in `run'", "/opt/module/logstash-6.3.2/lib/bootstrap/environment.rb:73:in `<main>'"]} An unexpected error occurred! {:error=>#<ArgumentError: Setting "" hasn't been registered>, :backtrace=>["/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:37:in `get_setting'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:70:in `set_value'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:89:in `block in merge'", "org/jruby/RubyHash.java:1343:in `each'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:89:in `merge'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/settings.rb:138:in `validate_all'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/runner.rb:279:in `execute'", "/opt/module/logstash-6.3.2/vendor/bundle/jruby/2.3.0/gems/clamp-0.6.5/lib/clamp/command.rb:67:in `run'", "/opt/module/logstash-6.3.2/logstash-core/lib/logstash/runner.rb:238:in `run'", "/opt/module/logstash-6.3.2/vendor/bundle/jruby/2.3.0/gems/clamp-0.6.5/lib/clamp/command.rb:132:in `run'", "/opt/module/logstash-6.3.2/lib/bootstrap/environment.rb:73:in `<main>'"]}
这个错误是由Logstash引起的,它指出某个设置(Setting)没有被注册。具体的错误信息是(ArgumentError: Setting "" hasn't been registered)。这个错误通常发生在Logstash的配置文件中,可能是由于配置文件中缺少了某个设置的值或者设置的名称有误导致的。你可以检查Logstash的配置文件,确保所有的设置都被正确地注册和赋予了值。如果你能提供更多的配置文件信息或者错误上下文,我可以更具体地帮助你解决这个问题。
阅读全文