上面这串代码报错AttributeError: 'NeuralNetwork' object has no attribute 'predict'
时间: 2023-06-23 13:58:56 浏览: 352
抱歉,我的回答有误。你需要在 `NeuralNetwork` 类中添加 `predict` 方法,以便在训练模型后进行预测。下面是一个简单的实现:
```python
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
# 初始化权重和偏置
self.W1 = np.random.randn(input_dim, hidden_dim)
self.b1 = np.zeros((1, hidden_dim))
self.W2 = np.random.randn(hidden_dim, output_dim)
self.b2 = np.zeros((1, output_dim))
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def forward(self, X):
# 前向传播
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
y_pred = self.z2
return y_pred
def mse_loss(self, y_pred, y_true):
# 计算均方误差
mse = np.mean((y_pred - y_true)**2)
return mse
def mse_loss_derivative(self, y_pred, y_true):
# 计算均方误差的导数
mse_derivative = 2 * (y_pred - y_true) / y_pred.size
return mse_derivative
def backward(self, X, y_true, y_pred, learning_rate):
# 反向传播
mse_derivative = self.mse_loss_derivative(y_pred, y_true)
dW2 = np.dot(self.a1.T, mse_derivative)
db2 = np.sum(mse_derivative, axis=0, keepdims=True)
da1 = np.dot(mse_derivative, self.W2.T)
dz1 = da1 * self.a1 * (1 - self.a1)
dW1 = np.dot(X.T, dz1)
db1 = np.sum(dz1, axis=0, keepdims=True)
# 更新参数
self.W2 -= learning_rate * dW2
self.b2 -= learning_rate * db2
self.W1 -= learning_rate * dW1
self.b1 -= learning_rate * db1
def train(self, X_train, y_train, learning_rate, num_epochs):
loss_history = []
for i in range(num_epochs):
# 前向传播
y_pred = self.forward(X_train)
# 计算损失
loss = self.mse_loss(y_pred, y_train)
# 反向传播更新参数
self.backward(X_train, y_train, y_pred, learning_rate)
# 记录损失历史
loss_history.append(loss)
# 打印损失
if i % 100 == 0:
print('Epoch: {}, Loss: {:.4f}'.format(i, loss))
return loss_history
def predict(self, X):
# 前向传播预测结果
y_pred = self.forward(X)
return y_pred
```
在上面的 `NeuralNetwork` 类中添加了 `predict` 方法,用于进行预测。你可以使用该方法进行预测,如下所示:
```python
# 预测
y_pred = nn.predict(X_test)
# 可视化预测结果和真实结果
plt.plot(y_test, label='true')
plt.plot(y_pred, label='pred')
plt.legend()
# 输出模型评估指标
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
print('MSE:', mse)
print('MAE:', mae)
```
阅读全文