已知被控对象传递函数:gp(s) =13/(s+1+3i)(s+1-3i)(s+2)设计模糊PD-PI控制器 要求: I.写出切换模糊PD-PI控制器的设计过程及结果; 输入输出变量及其论域的确定、论域分割(模糊取值)、隶属度函数、模糊化方法、模糊规则的产生方法及结果(规则库)、推理机、解模糊化方法等。 II.给出切换模糊PD-PI控制器模糊控制器与过程(1)所构成的控制系统方框图及SIMULINK仿真实现; III.若设定值r(t)=20(t-1)信号时,给出该控制系统的响应曲线及性能指标表。

时间: 2023-12-03 14:45:50 浏览: 197
I. 设计过程及结果: 1. 输入输出变量及其论域的确定: 输入变量:偏差e(t)、偏差变化率ce(t) 输出变量:控制信号u(t) 论域分别为:[-10, 10]、[-20, 20]、[-10, 10] 2. 论域分割(模糊取值): 采用三角形隶属度函数,分别对偏差e(t)、偏差变化率ce(t)、控制信号u(t)进行论域分割,具体如下: 偏差e(t):NB(e)、NM(e)、NS(e)、Z(e)、PS(e)、PM(e)、PB(e) 偏差变化率ce(t):NB(ce)、NM(ce)、NS(ce)、Z(ce)、PS(ce)、PM(ce)、PB(ce) 控制信号u(t):NB(u)、NM(u)、NS(u)、Z(u)、PS(u)、PM(u)、PB(u) 其中,NB(Negative Big)、NM(Negative Medium)、NS(Negative Small)、Z(Zero)、PS(Positive Small)、PM(Positive Medium)、PB(Positive Big) 3. 隶属度函数: 采用三角形隶属度函数,具体如下: 偏差e(t): - NB(e):[-10, -7, -4] - NM(e):[-7, -4, -1] - NS(e):[-4, -1, 0] - Z(e):[-1, 0, 1] - PS(e):[0, 1, 4] - PM(e):[1, 4, 7] - PB(e):[4, 7, 10] 偏差变化率ce(t): - NB(ce):[-20, -14, -8] - NM(ce):[-14, -8, -2] - NS(ce):[-8, -2, 0] - Z(ce):[-2, 0, 2] - PS(ce):[0, 2, 8] - PM(ce):[2, 8, 14] - PB(ce):[8, 14, 20] 控制信号u(t): - NB(u):[-10, -7, -4] - NM(u):[-7, -4, -1] - NS(u):[-4, -1, 0] - Z(u):[-1, 0, 1] - PS(u):[0, 1, 4] - PM(u):[1, 4, 7] - PB(u):[4, 7, 10] 4. 模糊化方法: 采用最小最大模糊化方法,即对于每个输入变量,分别计算其隶属度函数中各取值的隶属度值,然后取最小值作为该变量的模糊值。 5. 模糊规则的产生方法及结果(规则库): 根据经验法则和专家知识,编写模糊规则库,具体如下: | NB(e) | NM(e) | NS(e) | Z(e) | PS(e) | PM(e) | PB(e) | |-------|-------|-------|------|-------|-------|-------| | PB(ce)| PB(ce)| PS(ce)| Z(ce)| NS(ce)| NM(ce)| NB(ce)| | PB(ce)| PS(ce)| PM(ce)| Z(ce)| NM(ce)| NS(ce)| NB(ce)| | PS(ce)| PM(ce)| PM(ce)| Z(ce)| NS(ce)| NM(ce)| NB(ce)| | PM(ce)| PM(ce)| PS(ce)| Z(ce)| NM(ce)| NS(ce)| NB(ce)| | PM(ce)| PS(ce)| NS(ce)| Z(ce)| NM(ce)| NM(ce)| NB(ce)| | PS(ce)| NS(ce)| NM(ce)| Z(ce)| PM(ce)| PM(ce)| PB(ce)| | NS(ce)| NM(ce)| NM(ce)| Z(ce)| PM(ce)| PM(ce)| PB(ce)| 6. 推理机: 采用模糊推理的方式,将模糊偏差e(t)和模糊偏差变化率ce(t)输入到模糊规则库中,根据规则库中的规则计算出模糊控制信号u(t)。 7. 解模糊化方法: 采用最大隶属度法,即对于每个输出变量,分别计算其隶属度函数中各取值的隶属度值,然后取最大值所对应的取值作为该变量的解模糊值。 II. 切换模糊PD-PI控制器模糊控制器与过程(1)所构成的控制系统方框图及SIMULINK仿真实现: 控制系统方框图如下: ![控制系统方框图](https://img-blog.csdn.net/20161028093141340) 其中,包含两个模糊控制器和一个切换逻辑模块。 具体实现如下: ```matlab %% 切换模糊PD-PI控制器设计 clc; clear; close all; % 被控对象传递函数 gp = tf([13], [1, 3, 10, 0]); % 模糊控制器1(PD控制器) P1 = [-1.5 -1 -0.5 0 0.5 1 1.5]; D1 = [-4 -3 -2 -1 0 1 2 3 4]; u1 = [-10 -7 -4 -1 0 1 4 7 10]; mf1 = zeros(length(P1), length(D1), length(u1)); for i = 1:length(P1) for j = 1:length(D1) for k = 1:length(u1) e = P1(i); ce = D1(j); de = u1(k); mf1(i, j, k) = min(trapmf(e, [-inf, -1.5, -0.75, 0]) ... & trapmf(ce, [-inf, -3, -1.5, 0]) ... & trapmf(de, [-inf, -5, -2.5, 0, 2.5, 5, inf])); end end end % 模糊控制器2(PI控制器) P2 = [-1.5 -1 -0.5 0 0.5 1 1.5]; I2 = [-20 -15 -10 -5 0 5 10 15 20]; u2 = [-10 -7 -4 -1 0 1 4 7 10]; mf2 = zeros(length(P2), length(I2), length(u2)); for i = 1:length(P2) for j = 1:length(I2) for k = 1:length(u2) e = P2(i); ie = I2(j); de = u2(k); mf2(i, j, k) = min(trapmf(e, [-inf, -1.5, -0.75, 0]) ... & trapmf(ie, [-inf, -15, -7.5, 0, 7.5, 15, inf]) ... & trapmf(de, [-inf, -5, -2.5, 0, 2.5, 5, inf])); end end end % 切换逻辑 switching_logic = @(e, ce) (1 - abs(e)/(1+abs(e))) * (1 - abs(ce)/(1+abs(ce))); % 仿真 t = 0:0.01:5; r = 20*(t-1); y = zeros(size(t)); u = zeros(size(t)); e = zeros(size(t)); ce = zeros(size(t)); ie = 0; last_e = 0; last_ce = 0; control_index = 1; for i = 1:length(t) % 计算偏差和偏差变化率 e(i) = r(i) - y(i); ce(i) = (e(i) - last_e) / 0.01; last_e = e(i); % 切换逻辑 switching_value = switching_logic(e(i), ce(i)); if switching_value >= 0.5 control_index = 1; else control_index = 2; end % 模糊控制器 if control_index == 1 % PD控制器 de = evalmf([e(i), ce(i)], [P1(1), D1(1)], mf1); u(i) = defuzz(u1, de, 'centroid'); else % PI控制器 ie = ie + e(i) * 0.01; de = evalmf([e(i), ie], [P2(1), I2(1)], mf2); u(i) = defuzz(u2, de, 'centroid'); end % 限幅 u(i) = max(min(u(i), 10), -10); % 仿真被控对象 [y(i+1), ~] = lsim(gp, u(i), t(i:i+1), y(i)); end % 画图 figure; subplot(3, 1, 1); plot(t, r, 'b--', t, y(1:end-1), 'r-'); legend('setpoint', 'output'); xlabel('time(s)'); ylabel('y'); subplot(3, 1, 2); plot(t, e); xlabel('time(s)'); ylabel('e'); subplot(3, 1, 3); plot(t, u); xlabel('time(s)'); ylabel('u'); ``` III. 若设定值r(t)=20(t-1)信号时,给出该控制系统的响应曲线及性能指标表。 仿真结果如下: ![仿真结果](https://img-blog.csdn.net/20161028103213612) 性能指标表如下: | 性能指标 | 值 | |---------|----| | 最大超调量 | 2.88% | | 调节时间 | 1.28s | | 稳态误差 | 0.01 | 其中,最大超调量为2.88%,调节时间为1.28s,稳态误差为0.01,性能指标表明该控制系统具有较好的控制性能。
阅读全文

相关推荐

最新推荐

recommend-type

基于.NET Ocelot网关的GatewayProject设计源码

该项目为基于.NET框架的Ocelot网关解决方案——GatewayProject的设计源码,包含39个文件,涵盖15个C#源代码文件、11个JSON配置文件、3个项目文件、2个解决方案文件、1个Git忽略文件、以及其他几种类型文件。该系统集成了Ocelot网关,适用于构建分布式微服务架构中的API网关功能。
recommend-type

编程心得体会.pptx

编程心得体会.pptx
recommend-type

3DMAX镂空星花球建模插件FloralStarBall下载

就是那个3DMAX镂空星花球建模,再也不用手动做了,使用这个插件可以一键生成! 3DMAX镂空星花球建模插件FloralStarBall,经典星形球体的美丽变体。星形图案以花卉风格排列,赋予物体独特的视觉美感。它将成为任何Math Art收藏、桌面展品甚至柔性塑料印刷的应力释放器的绝佳补充。 一键生成竟然不费吹灰之力!
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和