利用python中tensorflow框架编写一个目标识别的程序,输入是3种一维信号,从自己的文件夹中读取,采用一维CNN结构
时间: 2024-05-13 20:20:41 浏览: 86
以下是一个简单的基于一维CNN的目标识别程序,用于识别三种不同的一维信号。需要先安装tensorflow和numpy库。
```python
import tensorflow as tf
import numpy as np
import os
# 定义超参数
learning_rate = 0.001
training_epochs = 100
batch_size = 50
# 定义输入维度和分类数
input_dim = 100
num_classes = 3
# 读取数据
def load_data():
x = []
y = []
for i in range(num_classes):
folder_path = 'data/' + str(i+1) + '/'
file_list = os.listdir(folder_path)
for file_name in file_list:
file_path = folder_path + file_name
with open(file_path, 'r') as f:
data = f.read()
data = data.split(',')
data = [float(x) for x in data]
x.append(data)
y.append(i)
x = np.array(x)
y = np.array(y)
return x, y
# 定义模型
def model(x):
x = tf.reshape(x, [-1, input_dim, 1])
conv1 = tf.layers.conv1d(inputs=x, filters=32, kernel_size=3, padding='same', activation=tf.nn.relu)
pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2)
conv2 = tf.layers.conv1d(inputs=pool1, filters=64, kernel_size=3, padding='same', activation=tf.nn.relu)
pool2 = tf.layers.max_pooling1d(inputs=conv2, pool_size=2, strides=2)
conv3 = tf.layers.conv1d(inputs=pool2, filters=128, kernel_size=3, padding='same', activation=tf.nn.relu)
pool3 = tf.layers.max_pooling1d(inputs=conv3, pool_size=2, strides=2)
flatten = tf.layers.flatten(pool3)
dense1 = tf.layers.dense(inputs=flatten, units=128, activation=tf.nn.relu)
logits = tf.layers.dense(inputs=dense1, units=num_classes)
return logits
# 定义损失函数和优化器
def loss_fn(logits, labels):
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
return loss
def optimizer_fn(loss):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
return optimizer
# 定义评估指标
def accuracy_fn(logits, labels):
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))
return accuracy
# 训练模型
def train(x_train, y_train, x_val, y_val):
x = tf.placeholder(tf.float32, [None, input_dim])
y = tf.placeholder(tf.int32, [None])
logits = model(x)
loss = loss_fn(logits, y)
optimizer = optimizer_fn(loss)
accuracy = accuracy_fn(logits, y)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
num_batches = int(x_train.shape[0] / batch_size)
for i in range(num_batches):
batch_start = i * batch_size
batch_end = (i + 1) * batch_size
batch_x = x_train[batch_start:batch_end]
batch_y = y_train[batch_start:batch_end]
_, loss_val = sess.run([optimizer, loss], feed_dict={x: batch_x, y: batch_y})
train_acc = sess.run(accuracy, feed_dict={x: x_train, y: y_train})
val_acc = sess.run(accuracy, feed_dict={x: x_val, y: y_val})
print('Epoch:', epoch+1, 'Train accuracy:', train_acc, 'Val accuracy:', val_acc)
# 加载数据并训练模型
x, y = load_data()
num_samples = x.shape[0]
shuffle_indices = np.random.permutation(np.arange(num_samples))
x = x[shuffle_indices]
y = y[shuffle_indices]
train_end = int(num_samples * 0.8)
x_train = x[:train_end]
y_train = y[:train_end]
x_val = x[train_end:]
y_val = y[train_end:]
train(x_train, y_train, x_val, y_val)
```
在上述程序中,我们首先读取了三种不同的一维信号数据,存储在自己的文件夹中。然后定义了一个包含三个卷积层和一个全连接层的一维CNN模型,并使用交叉熵损失函数和Adam优化器进行模型训练。最后,我们将数据集分成了80%的训练集和20%的验证集,使用训练集训练模型,同时在每个epoch结束时输出训练集和验证集的准确率。
阅读全文