Keras实现swinunetr网络
时间: 2024-03-24 21:36:42 浏览: 165
使用keras实现孪生网络中的权值共享教程
Swin Transformer是一种基于Transformer的神经网络结构,它在图像分类和目标检测等计算机视觉任务中表现出色。Swin Transformer的特点是具有高度可扩展性和高效性。
在Keras中实现Swin Transformer网络,需要安装Keras和TensorFlow库,然后按照以下步骤进行操作:
1. 导入必要的库
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```
2. 定义Swin Transformer网络结构
```python
def SwinTransformer(input_shape=(224, 224, 3), num_classes=1000):
# 输入层
inputs = keras.Input(shape=input_shape)
# Patch Embedding层
x = layers.Conv2D(filters=96, kernel_size=7, strides=4, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
# Swin Transformer块
x = SwinTransformerBlock(x, hidden_dim=96, num_heads=3, window_size=7, shift_size=2, name='block1')
x = SwinTransformerBlock(x, hidden_dim=192, num_heads=6, window_size=7, shift_size=2, name='block2')
x = SwinTransformerBlock(x, hidden_dim=384, num_heads=12, window_size=7, shift_size=2, name='block3')
x = SwinTransformerBlock(x, hidden_dim=768, num_heads=24, window_size=7, shift_size=2, name='block4')
x = SwinTransformerBlock(x, hidden_dim=1536, num_heads=32, window_size=7, shift_size=2, name='block5')
# Layer Norm层
x = layers.LayerNormalization()(x)
# 全局平均池化层
x = layers.GlobalAveragePooling2D()(x)
# Dropout层
x = layers.Dropout(0.2)(x)
# 输出层
outputs = layers.Dense(num_classes, activation='softmax')(x)
# 构建模型
model = keras.Model(inputs=inputs, outputs=outputs, name='swin_transformer')
return model
```
其中,Swin Transformer块的实现可以参考以下代码:
```python
def SwinTransformerBlock(inputs, hidden_dim, num_heads, window_size, shift_size, name):
# 输入层
x = inputs
# Shift层
x = ShiftLayer(window_size=window_size, shift_size=shift_size, name=name+'_shift')(x)
# Layer Norm层
x = layers.LayerNormalization()(x)
# Multi-Head Attention层
x = MultiHeadAttention(hidden_dim=hidden_dim, num_heads=num_heads, name=name+'_mha')(x)
# Layer Norm层
x = layers.LayerNormalization()(x)
# MLP层
x = MLP(hidden_dim=hidden_dim, name=name+'_mlp')(x)
# Residual连接
x = layers.Add()([inputs, x])
return x
```
其中,Shift层、Multi-Head Attention层和MLP层的实现可以参考以下代码:
```python
class ShiftLayer(layers.Layer):
def __init__(self, window_size, shift_size, **kwargs):
super(ShiftLayer, self).__init__(**kwargs)
self.window_size = window_size
self.shift_size = shift_size
def call(self, inputs):
# 得到输入张量的形状和空间维度
shape = tf.shape(inputs)
batch_size, height, width, channels = shape[0], shape[1], shape[2], shape[3]
# 将输入张量分割为不同的块
x = tf.reshape(inputs, [batch_size, height // self.window_size, self.window_size, width // self.window_size, self.window_size, channels])
x = tf.transpose(x, [0, 1, 3, 2, 4, 5])
x = tf.reshape(x, [batch_size, height // self.window_size, width // self.window_size, self.window_size * self.window_size * channels])
# Shift操作
x = tf.roll(x, shift=(-self.shift_size, -self.shift_size), axis=(1, 2))
# 将块重新组合成张量
x = tf.reshape(x, [batch_size, height // self.window_size, width // self.window_size, self.window_size, self.window_size, channels])
x = tf.transpose(x, [0, 1, 3, 2, 4, 5])
x = tf.reshape(x, [batch_size, height, width, channels])
return x
class MultiHeadAttention(layers.Layer):
def __init__(self, hidden_dim, num_heads, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.hidden_dim = hidden_dim
self.num_heads = num_heads
assert hidden_dim % num_heads == 0
self.depth = hidden_dim // num_heads
self.query_dense = layers.Dense(hidden_dim)
self.key_dense = layers.Dense(hidden_dim)
self.value_dense = layers.Dense(hidden_dim)
self.combine_heads = layers.Dense(hidden_dim)
def call(self, inputs):
# 得到输入张量的形状和空间维度
shape = tf.shape(inputs)
batch_size, height, width, channels = shape[0], shape[1], shape[2], shape[3]
# 计算Query、Key和Value张量
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
# 按通道数分割Query、Key和Value张量,并重塑形状
query = tf.reshape(query, [batch_size, height, width, self.num_heads, self.depth])
key = tf.reshape(key, [batch_size, height, width, self.num_heads, self.depth])
value = tf.reshape(value, [batch_size, height, width, self.num_heads, self.depth])
# 计算Attention分数
attention_scores = tf.matmul(query, key, transpose_b=True)
attention_scores = attention_scores / tf.math.sqrt(tf.cast(self.depth, tf.float32))
# 计算Attention权重
attention_weights = tf.nn.softmax(attention_scores, axis=-1)
# 计算加权的Value张量
attention_output = tf.matmul(attention_weights, value)
# 重塑形状并合并通道数
attention_output = tf.reshape(attention_output, [batch_size, height, width, self.hidden_dim])
attention_output = self.combine_heads(attention_output)
return attention_output
def MLP(hidden_dim, **kwargs):
return keras.Sequential([
layers.Dense(hidden_dim * 4, activation='gelu'),
layers.Dense(hidden_dim)
], **kwargs)
```
3. 编译和训练模型
```python
# 编译模型
model = SwinTransformer(num_classes=1000)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(train_dataset, epochs=10, validation_data=val_dataset)
```
以上代码中,train_dataset和val_dataset是训练集和验证集的数据集对象,需要根据实际情况进行定义。
希望这个实现Swin Transformer网络的Keras代码能够对您有所帮助!
阅读全文