matlab用自定义函数myRoot,求解一元二次方程:ax2+bx+c=0, 要求:入口参数a,b,c,出口参数:方程的根x1,x2。 并在命令窗口中验证函数功能
时间: 2024-01-22 12:20:05 浏览: 102
以下是实现自定义函数myRoot的MATLAB代码:
```matlab
function [x1, x2] = myRoot(a, b, c)
% 求解一元二次方程ax^2+bx+c=0的根
delta = b^2 - 4*a*c;
if delta < 0
error('方程无实数根');
else
x1 = (-b + sqrt(delta))/(2*a);
x2 = (-b - sqrt(delta))/(2*a);
end
end
```
使用该函数求解方程 $x^2 - 2x + 1 = 0$,并在命令窗口中验证函数功能:
```matlab
>> [x1, x2] = myRoot(1, -2, 1)
x1 =
1
x2 =
1
>> roots([1, -2, 1])
ans =
1
1
```
可以看到,通过使用自定义函数myRoot和MATLAB内置函数roots,得到的方程的根是一致的,说明函数实现正确。
相关问题
import QtQuick 2.9 Item { id:myroot property int size:150 property int linewidth:5 property real value:0 property color primarycolor:"blue" property color secondarycolor:"red" property int animationduration:1000 width: size height: size onValueChanged: { mycanvas.degree=value*360; can } Canvas{ id:mycanvas property real degree:0 anchors.fill: parent antialiasing: true onDegreeChanged: { requestPaint(); } onPaint: { var ctx=getContext("2d"); var x=myroot.width/2; var y=myroot.height/2; var radius=myroot.size/2-myroot.linewidth var startangle=(Math.PI/180)*270; var fullAngle=(Math.PI/180)*(270+360); var progressAngle=(Math.PI/180)*(270+degree); ctx.reset(); ctx.lineCap='round'; ctx.lineWidth=myroot.linewidth; ctx.beginPath(); ctx.arc(x,y,radius,startangle,fullAngle); ctx.strokeStyle=myroot.secondarycolor; ctx.stroke(); ctx.beginPath(); ctx.arc(x,y,radius,startangle,progressAngle); ctx.strokeStyle=myroot.primarycolor; ctx.stroke(); } Behavior on degree { NumberAnimation{ duration: myroot.animationduration } } } }解释一下这个代码
这是一个使用 QtQuick 2.9 开发的 Item,其中包含了一些属性,如大小、线宽、值、主要颜色和次要颜色等。它还包含了一个 Canvas,用于绘制一个圆形进度条。当值改变时,Canvas 会根据值的变化来更新进度条的绘制。在绘制时,Canvas 会使用两种颜色来绘制圆形进度条,分别是主要颜色和次要颜色。此外,Canvas 还包含了一个行为,用于控制进度条的动画效果。
阅读全文
相关推荐













