python opencv人脸性别年龄识别代码

时间: 2023-07-30 13:05:14 浏览: 128
ZIP

OpenCV人脸性别识别

star4星 · 用户满意度95%
以下是一个基于Python和OpenCV的人脸性别年龄识别代码示例: ```python import cv2 # 加载人脸识别分类器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载性别识别模型 gender_net = cv2.dnn.readNetFromCaffe('deploy_gender.prototxt', 'gender_net.caffemodel') gender_list = ['Male', 'Female'] # 加载年龄识别模型 age_net = cv2.dnn.readNetFromCaffe('deploy_age.prototxt', 'age_net.caffemodel') age_list = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)'] # 读取图像 img = cv2.imread('test.jpg') # 将图像转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, 1.3, 5) # 遍历每个人脸 for (x,y,w,h) in faces: # 在图像中绘制矩形框显示人脸位置 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) # 获取人脸区域 face_roi = img[y:y+h, x:x+w] # 将人脸区域转换为blob blob = cv2.dnn.blobFromImage(face_roi, scalefactor=1.0, size=(227, 227), mean=(78.4263377603, 87.7689143744, 114.895847746), swapRB=False, crop=False) # 性别识别 gender_net.setInput(blob) gender_preds = gender_net.forward() gender = gender_list[gender_preds[0].argmax()] # 年龄识别 age_net.setInput(blob) age_preds = age_net.forward() age = age_list[age_preds[0].argmax()] # 在图像中绘制性别和年龄信息 label = "{},{}".format(gender, age) cv2.putText(img, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # 显示图像 cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 上述代码中,我们使用了OpenCV的CascadeClassifier来检测人脸,使用了Caffe深度学习框架进行性别和年龄的识别。在代码中,我们需要加载人脸识别分类器(haarcascade_frontalface_default.xml文件)、性别识别模型(deploy_gender.prototxt和gender_net.caffemodel文件)和年龄识别模型(deploy_age.prototxt和age_net.caffemodel文件),并将它们分别用于人脸检测、性别识别和年龄识别。最后,我们在图像中绘制出人脸位置和性别年龄信息,并将结果显示出来。
阅读全文

相关推荐

最新推荐

recommend-type

基于树莓派opencv的人脸识别.pdf

【基于树莓派opencv的人脸识别】 在计算机视觉领域,人脸识别是一种常见的技术,它通过捕捉和分析面部特征来识别人的身份。本教程将详细介绍如何在树莓派上使用OpenCV库实现这一功能。 首先,我们需要了解摄像头的...
recommend-type

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

在Python中实现人脸识别与表情判别,我们可以创建一个类,如`face_emotion`。初始化该类时,我们调用Dlib的`get_frontal_face_detector`获取人脸检测器,并加载预先训练好的68点模型。然后,我们创建一个OpenCV的...
recommend-type

Python OpenCV调用摄像头检测人脸并截图

首先,为了进行人脸识别,我们需要在Python环境中安装OpenCV库。你可以使用pip命令来安装: ```bash pip install opencv-python ``` 此外,OpenCV还提供了预训练的人脸检测模型,这里使用的是`haarcascade_...
recommend-type

【人脸识别】用非常简短的Python代码实现人脸检测

【人脸识别】技术是一种基于人的生物特征进行身份识别的计算机...总之,Python结合OpenCV库提供了一种简洁且高效的方法来实现人脸识别和检测。无论是静态图片还是动态视频流,都能轻松处理,为各种应用场景提供了便利。
recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

在本文中,我们将深入探讨如何使用卷积神经网络(CNN)进行人脸识别。首先,我们需要理解卷积神经网络的基本概念。CNN是一种深度学习模型,特别适用于图像处理任务,因为它能够自动学习和提取图像中的特征。在人脸...
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。