if name in self.return_layers: out_name = self.return_layers[name] if name == 'stage4' and self.hrnet_flag: # In HRNetV2, we upsample and concat all outputs streams together output_h, output_w = x[0].size(2), x[0].size(3) # Upsample to size of highest resolution stream x1 = F.interpolate(x[1], size=(output_h, output_w), mode='bilinear', align_corners=False) x2 = F.interpolate(x[2], size=(output_h, output_w), mode='bilinear', align_corners=False) x3 = F.interpolate(x[3], size=(output_h, output_w), mode='bilinear', align_corners=False) x = torch.cat([x[0], x1, x2, x3], dim=1) out[out_name] = x else: out[out_name] = x return out
时间: 2024-02-14 22:22:40 浏览: 153
这段代码包含在一个 PyTorch 模型的 forward 方法中,用于处理模型的输出。该模型是一个分割模型,返回多个分辨率的特征图。在这段代码中,使用了一个字典 out 来存储输出,其中键为特征图的名称,值为特征图。该模型中包含了多个子模块,其中一些子模块的输出需要单独返回。这个函数首先使用了 module.named_modules() 方法来遍历模块中的所有子模块,然后根据设定的 return_layers 字典来判断是否需要返回该子模块的输出。如果需要返回该子模块的输出,则将其存储到 out 字典中。在 HRNetV2 这个模型中,如果需要返回 stage4 子模块的输出,需要将其它三个子模块的输出进行上采样并拼接在一起,最后将拼接后的特征图存储到 out 字典中。最后,函数返回 out 字典。
阅读全文