import pandas as pd #地方财政收入神经网络预测模型 inputfile='../tmp/new_reg_data_GM11.xls' outputfile='../tmp/new_reg_data_GM11_revenue.xls' modelfile='../tmp/1-net.model' data=pd.read_excel(inputfile) feature=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','x11','x13']#特征所在列 data_train=data.loc[range(1994,2014)].copy()#取2014年前的建模数据 data_mean=data_train.mean() data_std=data_train.std() data_train=(data_train-data_mean)/data_std#数据标准化 x_train=data_train[feature].as_matrix()#特征数据 y_train=data_train['y'].as_matrix()#标签数据 from keras.models import Sequential from keras.layers.core import Dense,Activation model=Sequential()#建立模型 model.add(Dense(input_dim=12,output_dim=12)) model.add(Activation('relu'))#激活函数 model.add(Dense(input_dim=12,output_dim=1)) model.compile(loss='mean_squared_error',optimizer='adam')#编译模型,目标函数是均方差 model.fit(x_train,y_train,nb_epoch=10000,batch_size=16)#训练模型 model.save_weights(modelfile)#保存模型 #预测并还原结果 x=((data[feature]-data_mean[feature])/data_std[feature]).as_matrix() data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y'] data.to_excel(outputfile) #画出预测图 import matplotlib.pyplot as plt p=data[['y','y_pred']].plot(subplots=True,style=['b-o','r-*']) plt.show()
时间: 2023-12-09 18:03:08 浏览: 72
这段代码是一个使用神经网络模型进行地方财政收入预测的例子。首先从Excel文件中读入数据,并选取其中的特征列和标签列构成训练数据,然后对训练数据进行标准化处理。接着使用Keras建立神经网络模型,包括输入层、隐藏层和输出层,其中隐藏层使用了ReLU激活函数。然后对模型进行编译,使用均方差作为目标函数,使用Adam优化器进行训练。训练完成后,将模型保存到文件中。最后对所有数据进行预测,并将预测结果还原到原始数据范围内,将预测结果写入Excel文件中,并画出预测图。
需要注意的是,这段代码中的一些函数已经过时,例如`as_matrix()`和`nb_epoch`,建议使用更新的函数代替。同时,这段代码并没有对模型进行评估,可以考虑增加评估的步骤。
阅读全文