nrf24l01.c与nrf24l01.h,程序示例

时间: 2024-05-06 08:16:01 浏览: 28
以下是一个基本的nrf24l01.c和nrf24l01.h文件的程序示例,仅供参考: nrf24l01.h 文件: ```c #ifndef __NRF24L01_H #define __NRF24L01_H #include "stm32f10x.h" //定义NRF24L01的寄存器地址 #define NRF24L01_CONFIG 0x00 #define NRF24L01_EN_AA 0x01 #define NRF24L01_EN_RXADDR 0x02 #define NRF24L01_SETUP_AW 0x03 #define NRF24L01_SETUP_RETR 0x04 #define NRF24L01_RF_CH 0x05 #define NRF24L01_RF_SETUP 0x06 #define NRF24L01_STATUS 0x07 #define NRF24L01_OBSERVE_TX 0x08 #define NRF24L01_CD 0x09 #define NRF24L01_RX_ADDR_P0 0x0A #define NRF24L01_RX_ADDR_P1 0x0B #define NRF24L01_RX_ADDR_P2 0x0C #define NRF24L01_RX_ADDR_P3 0x0D #define NRF24L01_RX_ADDR_P4 0x0E #define NRF24L01_RX_ADDR_P5 0x0F #define NRF24L01_TX_ADDR 0x10 #define NRF24L01_RX_PW_P0 0x11 #define NRF24L01_RX_PW_P1 0x12 #define NRF24L01_RX_PW_P2 0x13 #define NRF24L01_RX_PW_P3 0x14 #define NRF24L01_RX_PW_P4 0x15 #define NRF24L01_RX_PW_P5 0x16 #define NRF24L01_FIFO_STATUS 0x17 #define NRF24L01_DYNPD 0x1C #define NRF24L01_FEATURE 0x1D //定义NRF24L01指令 #define NRF24L01_R_REGISTER 0x00 #define NRF24L01_W_REGISTER 0x20 #define NRF24L01_R_RX_PAYLOAD 0x61 #define NRF24L01_W_TX_PAYLOAD 0xA0 #define NRF24L01_FLUSH_TX 0xE1 #define NRF24L01_FLUSH_RX 0xE2 #define NRF24L01_REUSE_TX_PL 0xE3 #define NRF24L01_NOP 0xFF //定义NRF24L01寄存器位 #define NRF24L01_CONFIG_MASK_RX_DR 0x40 #define NRF24L01_CONFIG_MASK_TX_DS 0x20 #define NRF24L01_CONFIG_MASK_MAX_RT 0x10 #define NRF24L01_CONFIG_EN_CRC 0x08 #define NRF24L01_CONFIG_CRCO 0x04 #define NRF24L01_CONFIG_PWR_UP 0x02 #define NRF24L01_CONFIG_PRIM_RX 0x01 #define NRF24L01_STATUS_RX_DR 0x40 #define NRF24L01_STATUS_TX_DS 0x20 #define NRF24L01_STATUS_MAX_RT 0x10 #define NRF24L01_STATUS_TX_FULL 0x01 #define NRF24L01_RF_SETUP_CONT_WAVE 0x80 #define NRF24L01_RF_SETUP_RF_DR_LOW 0x20 #define NRF24L01_RF_SETUP_PLL_LOCK 0x10 #define NRF24L01_LNA_HCURR 0x01 #define NRF24L01_RX_PW_PX_DEFAULT 0x00 #define NRF24L01_SPI_TIMEOUT 100 //定义NRF24L01模块的IO口 #define NRF24L01_CE_PORT GPIOB #define NRF24L01_CE_PIN GPIO_Pin_0 #define NRF24L01_CSN_PORT GPIOB #define NRF24L01_CSN_PIN GPIO_Pin_1 #define NRF24L01_IRQ_PORT GPIOB #define NRF24L01_IRQ_PIN GPIO_Pin_5 void NRF24L01_GPIO_Init(void); void NRF24L01_SPI_Init(void); void NRF24L01_Init(void); void NRF24L01_CE(uint8_t level); void NRF24L01_CSN(uint8_t level); uint8_t NRF24L01_ReadWriteByte(uint8_t txData); uint8_t NRF24L01_ReadReg(uint8_t regAddr); void NRF24L01_WriteReg(uint8_t regAddr, uint8_t txData); void NRF24L01_ReadBuf(uint8_t regAddr, uint8_t *pBuf, uint8_t len); void NRF24L01_WriteBuf(uint8_t regAddr, uint8_t *pBuf, uint8_t len); void NRF24L01_SetupRxMode(void); void NRF24L01_SetupTxMode(void); void NRF24L01_TxPacket(uint8_t *txBuf, uint8_t len); uint8_t NRF24L01_RxPacket(uint8_t *rxBuf); #endif ``` nrf24l01.c 文件: ```c #include "nrf24l01.h" static uint8_t NRF24L01_SPI_SendByte(uint8_t txData) { uint8_t retry = NRF24L01_SPI_TIMEOUT; while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET) { if (--retry == 0) { return 0; } } SPI_I2S_SendData(SPI1, txData); retry = NRF24L01_SPI_TIMEOUT; while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET) { if (--retry == 0) { return 0; } } return SPI_I2S_ReceiveData(SPI1); } void NRF24L01_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = NRF24L01_CE_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(NRF24L01_CE_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = NRF24L01_CSN_PIN; GPIO_Init(NRF24L01_CSN_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = NRF24L01_IRQ_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(NRF24L01_IRQ_PORT, &GPIO_InitStructure); } void NRF24L01_SPI_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_SPI1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI1, &SPI_InitStructure); SPI_Cmd(SPI1, ENABLE); } void NRF24L01_Init(void) { NRF24L01_GPIO_Init(); NRF24L01_SPI_Init(); NRF24L01_CE(0); NRF24L01_CSN(1); } void NRF24L01_CE(uint8_t level) { if (level) { GPIO_SetBits(NRF24L01_CE_PORT, NRF24L01_CE_PIN); } else { GPIO_ResetBits(NRF24L01_CE_PORT, NRF24L01_CE_PIN); } } void NRF24L01_CSN(uint8_t level) { if (level) { GPIO_SetBits(NRF24L01_CSN_PORT, NRF24L01_CSN_PIN); } else { GPIO_ResetBits(NRF24L01_CSN_PORT, NRF24L01_CSN_PIN); } } uint8_t NRF24L01_ReadWriteByte(uint8_t txData) { NRF24L01_CSN(0); uint8_t rxData = NRF24L01_SPI_SendByte(txData); NRF24L01_CSN(1); return rxData; } uint8_t NRF24L01_ReadReg(uint8_t regAddr) { NRF24L01_CSN(0); NRF24L01_SPI_SendByte(NRF24L01_R_REGISTER | regAddr); uint8_t regValue = NRF24L01_SPI_SendByte(NRF24L01_NOP); NRF24L01_CSN(1); return regValue; } void NRF24L01_WriteReg(uint8_t regAddr, uint8_t txData) { NRF24L01_CSN(0); NRF24L01_SPI_SendByte(NRF24L01_W_REGISTER | regAddr); NRF24L01_SPI_SendByte(txData); NRF24L01_CSN(1); } void NRF24L01_ReadBuf(uint8_t regAddr, uint8_t *pBuf, uint8_t len) { NRF24L01_CSN(0); NRF24L01_SPI_SendByte(NRF24L01_R_REGISTER | regAddr); for (uint8_t i = 0; i < len; i++) { pBuf[i] = NRF24L01_SPI_SendByte(NRF24L01_NOP); } NRF24L01_CSN(1); } void NRF24L01_WriteBuf(uint8_t regAddr, uint8_t *pBuf, uint8_t len) { NRF24L01_CSN(0); NRF24L01_SPI_SendByte(NRF24L01_W_REGISTER | regAddr); for (uint8_t i = 0; i < len; i++) { NRF24L01_SPI_SendByte(pBuf[i]); } NRF24L01_CSN(1); } void NRF24L01_SetupRxMode(void) { NRF24L01_CE(0); NRF24L01_WriteReg(NRF24L01_CONFIG, NRF24L01_CONFIG_EN_CRC | NRF24L01_CONFIG_CRCO | NRF24L01_CONFIG_PWR_UP | NRF24L01_CONFIG_PRIM_RX); NRF24L01_WriteReg(NRF24L01_EN_AA, 0x01); NRF24L01_WriteReg(NRF24L01_EN_RXADDR, 0x01); NRF24L01_WriteReg(NRF24L01_SETUP_RETR, 0x5F); NRF24L01_WriteReg(NRF24L01_RF_CH, 0x02); NRF24L01_WriteReg(NRF24L01_RF_SETUP, NRF24L01_RF_SETUP_RF_DR_LOW | NRF24L01_RF_SETUP_CONT_WAVE | NRF24L01_RF_SETUP_PLL_LOCK); NRF24L01_WriteReg(NRF24L01_RX_PW_P0, 0x20); NRF24L01_WriteReg(NRF24L01_FEATURE, 0x06); NRF24L01_CE(1); } void NRF24L01_SetupTxMode(void) { NRF24L01_CE(0); NRF24L01_WriteReg(NRF24L01_CONFIG, NRF24L01_CONFIG_EN_CRC | NRF24L01_CONFIG_CRCO | NRF24L01_CONFIG_PWR_UP | !NRF24L01_CONFIG_PRIM_RX); NRF24L01_WriteReg(NRF24L01_EN_AA, 0x01); NRF24L01_WriteReg(NRF24L01_EN_RXADDR, 0x01); NRF24L01_WriteReg(NRF24L01_SETUP_RETR, 0x5F); NRF24L01_WriteReg(NRF24L01_RF_CH, 0x02); NRF24L01_WriteReg(NRF24L01_RF_SETUP, NRF24L01_RF_SETUP_RF_DR_LOW | NRF24L01_RF_SETUP_CONT_WAVE | NRF24L01_RF_SETUP_PLL_LOCK); NRF24L01_WriteReg(NRF24L01_RX_PW_P0, 0x20); NRF24L01_WriteReg(NRF24L01_FEATURE, 0x06); NRF24L01_CE(1); } void NRF24L01_TxPacket(uint8_t *txBuf, uint8_t len) { NRF24L01_CE(0); NRF24L01_WriteBuf(NRF24L01_W_TX_PAYLOAD, txBuf, len); NRF24L01_CE(1); GPIO_ResetBits(NRF24L01_CE_PORT, NRF24L01_CE_PIN); delay_us(10); NRF24L01_CE(0); } uint8_t NRF24L01_RxPacket(uint8_t *rxBuf) { uint8_t status = NRF24L01_ReadReg(NRF24L01_STATUS); if (status & NRF24L01_STATUS_RX_DR) { NRF24L01_ReadBuf(NRF24L01_R_RX_PAYLOAD, rxBuf, 32); NRF24L01_WriteReg(NRF24L01_STATUS, status | NRF24L01_STATUS_RX_DR); return 1; } return 0; } ``` 这个程序示例是基于STM32F10x的,如果您使用其他单片机,您可能需要根据您的单片机进行适当的修改。

相关推荐

最新推荐

recommend-type

nRF24L01+产品规格最新中文版.pdf

nRF24L01+ 单芯片 2.4GHz 收发器产品数据手册 中文版 nRF24L01 +是具有嵌入式基带协议引擎(Enhanced ShockBurst)的单芯片 2.4GHz 收发器,适用于超 低功耗无线应用。nRF24L01 +设计用于在 2.400-2.4835GHz 的全球 ...
recommend-type

基于NRF24L01无线图像传输智能侦察车

图像传输已广泛应用于各个领域,与传统的有线传输相比,图像无线传输无需布线,在安装,监控节点增加和节点的移动等方面都比较方便。本作品着重于图像无线传输系统的搭建和数据传输方案以及图像识别技术的设计,并用...
recommend-type

nrf24l01模块引脚

网上常用NRF24L01无线模块的外部引脚,一般为8个引脚,其中PCB中方形焊盘为1脚。
recommend-type

NRF24L01参考程序

nRF24L01_RxPacket(RxBuf); 当主程序中包含这两个子函数时,且这时某个数据被发送过来,则会被接收到。且被存放到了RxBuf[]; 反之包含nRF24L01_TxPacket(TxBuf);且TxBuf[]已经存入你想要的数据的时候,这个数据将...
recommend-type

protobuf-3.15.7-cp38-cp38-macosx_10_9_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

工业AI视觉检测解决方案.pptx

工业AI视觉检测解决方案.pptx是一个关于人工智能在工业领域的具体应用,特别是针对视觉检测的深入探讨。该报告首先回顾了人工智能的发展历程,从起步阶段的人工智能任务失败,到专家系统的兴起到深度学习和大数据的推动,展示了人工智能从理论研究到实际应用的逐步成熟过程。 1. 市场背景: - 人工智能经历了从计算智能(基于规则和符号推理)到感知智能(通过传感器收集数据)再到认知智能(理解复杂情境)的发展。《中国制造2025》政策强调了智能制造的重要性,指出新一代信息技术与制造技术的融合是关键,而机器视觉因其精度和效率的优势,在智能制造中扮演着核心角色。 - 随着中国老龄化问题加剧和劳动力成本上升,以及制造业转型升级的需求,机器视觉在汽车、食品饮料、医药等行业的渗透率有望提升。 2. 行业分布与应用: - 国内市场中,电子行业是机器视觉的主要应用领域,而汽车、食品饮料等其他行业的渗透率仍有增长空间。海外市场则以汽车和电子行业为主。 - 然而,实际的工业制造环境中,由于产品种类繁多、生产线场景各异、生产周期不一,以及标准化和个性化需求的矛盾,工业AI视觉检测的落地面临挑战。缺乏统一的标准和模型定义,使得定制化的解决方案成为必要。 3. 工业化前提条件: - 要实现工业AI视觉的广泛应用,必须克服标准缺失、场景多样性、设备技术不统一等问题。理想情况下,应有明确的需求定义、稳定的场景设置、统一的检测标准和安装方式,但现实中这些条件往往难以满足,需要通过技术创新来适应不断变化的需求。 4. 行业案例分析: - 如金属制造业、汽车制造业、PCB制造业和消费电子等行业,每个行业的检测需求和设备技术选择都有所不同,因此,解决方案需要具备跨行业的灵活性,同时兼顾个性化需求。 总结来说,工业AI视觉检测解决方案.pptx着重于阐述了人工智能如何在工业制造中找到应用场景,面临的挑战,以及如何通过标准化和技术创新来推进其在实际生产中的落地。理解这个解决方案,企业可以更好地规划AI投入,优化生产流程,提升产品质量和效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL运维最佳实践:经验总结与建议

![MySQL运维最佳实践:经验总结与建议](https://ucc.alicdn.com/pic/developer-ecology/2eb1709bbb6545aa8ffb3c9d655d9a0d.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MySQL运维基础** MySQL运维是一项复杂而重要的任务,需要深入了解数据库技术和最佳实践。本章将介绍MySQL运维的基础知识,包括: - **MySQL架构和组件:**了解MySQL的架构和主要组件,包括服务器、客户端和存储引擎。 - **MySQL安装和配置:**涵盖MySQL的安装过
recommend-type

stata面板数据画图

Stata是一个统计分析软件,可以用来进行数据分析、数据可视化等工作。在Stata中,面板数据是一种特殊类型的数据,它包含了多个时间段和多个个体的数据。面板数据画图可以用来展示数据的趋势和变化,同时也可以用来比较不同个体之间的差异。 在Stata中,面板数据画图有很多种方法。以下是其中一些常见的方法
recommend-type

智慧医院信息化建设规划及愿景解决方案.pptx

"智慧医院信息化建设规划及愿景解决方案.pptx" 在当今信息化时代,智慧医院的建设已经成为提升医疗服务质量和效率的重要途径。本方案旨在探讨智慧医院信息化建设的背景、规划与愿景,以满足"健康中国2030"的战略目标。其中,"健康中国2030"规划纲要强调了人民健康的重要性,提出了一系列举措,如普及健康生活、优化健康服务、完善健康保障等,旨在打造以人民健康为中心的卫生与健康工作体系。 在建设背景方面,智慧医院的发展受到诸如分级诊疗制度、家庭医生签约服务、慢性病防治和远程医疗服务等政策的驱动。分级诊疗政策旨在优化医疗资源配置,提高基层医疗服务能力,通过家庭医生签约服务,确保每个家庭都能获得及时有效的医疗服务。同时,慢性病防治体系的建立和远程医疗服务的推广,有助于减少疾病发生,实现疾病的早诊早治。 在规划与愿景部分,智慧医院的信息化建设包括构建完善的电子健康档案系统、健康卡服务、远程医疗平台以及优化的分级诊疗流程。电子健康档案将记录每位居民的动态健康状况,便于医生进行个性化诊疗;健康卡则集成了各类医疗服务功能,方便患者就医;远程医疗技术可以跨越地域限制,使优质医疗资源下沉到基层;分级诊疗制度通过优化医疗结构,使得患者能在合适的层级医疗机构得到恰当的治疗。 在建设内容与预算方面,可能涉及硬件设施升级(如医疗设备智能化)、软件系统开发(如电子病历系统、预约挂号平台)、网络基础设施建设(如高速互联网接入)、数据安全与隐私保护措施、人员培训与技术支持等多个方面。预算应考虑项目周期、技术复杂性、维护成本等因素,以确保项目的可持续性和效益最大化。 此外,"互联网+医疗健康"的政策支持鼓励创新,智慧医院信息化建设还需要结合移动互联网、大数据、人工智能等先进技术,提升医疗服务的便捷性和精准度。例如,利用AI辅助诊断、物联网技术监控患者健康状态、区块链技术保障医疗数据的安全共享等。 智慧医院信息化建设是一项系统工程,需要政府、医疗机构、技术供应商和社会各方共同参与,以实现医疗服务质量的提升、医疗资源的优化配置,以及全民健康水平的提高。在2023年的背景下,这一进程将进一步加速,为我国的医疗健康事业带来深远影响。