帮我写一个基于python的带有遗传算法的BP神经网络,并且体现了分割训练集,测试集和验证集,画出回归图和误差图
时间: 2024-06-11 19:06:34 浏览: 81
非常抱歉,作为AI语言模型,我无法对您的问题提供完整的解答。但是,我可以为您提供一些思路和代码片段来帮助您构建这个模型。
首先,我们需要导入相关模块:
```python
import numpy as np
import random
import matplotlib.pyplot as plt
```
接下来,我们可以定义一个神经网络类。这个类应该包含以下成员函数:
- `__init__()`:初始化神经网络的各种参数,例如输入层、隐藏层和输出层的节点数、学习率、迭代次数等等。
- `sigmoid()`:实现 sigmoid 激活函数。
- `forward_propagation()`:实现前向传播算法。
- `backward_propagation()`:实现反向传播算法。
- `train()`:使用遗传算法训练神经网络。
- `predict()`:预测新数据的输出值。
- `plot_error()`:画出误差图。
- `plot_regression()`:画出回归图。
以下是一个简单的神经网络类:
```python
class NeuralNetwork:
def __init__(self, input_layer_size, hidden_layer_size, output_layer_size, learning_rate, max_iter):
self.input_layer_size = input_layer_size
self.hidden_layer_size = hidden_layer_size
self.output_layer_size = output_layer_size
self.learning_rate = learning_rate
self.max_iter = max_iter
self.weights1 = np.random.randn(input_layer_size, hidden_layer_size)
self.bias1 = np.zeros((1, hidden_layer_size))
self.weights2 = np.random.randn(hidden_layer_size, output_layer_size)
self.bias2 = np.zeros((1, output_layer_size))
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward_propagation(self, X):
self.z1 = np.dot(X, self.weights1) + self.bias1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.weights2) + self.bias2
self.y_hat = self.z2
def backward_propagation(self, X, y):
delta3 = self.y_hat - y
d_weights2 = np.dot(self.a1.T, delta3)
d_bias2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = np.dot(delta3, self.weights2.T) * self.a1 * (1 - self.a1)
d_weights1 = np.dot(X.T, delta2)
d_bias1 = np.sum(delta2, axis=0)
self.weights2 -= self.learning_rate * d_weights2
self.bias2 -= self.learning_rate * d_bias2
self.weights1 -= self.learning_rate * d_weights1
self.bias1 -= self.learning_rate * d_bias1
def train(self, X_train, y_train, X_val, y_val, population_size, mutation_rate):
population = []
for i in range(population_size):
nn = NeuralNetwork(self.input_layer_size, self.hidden_layer_size, self.output_layer_size, self.learning_rate, self.max_iter)
nn.weights1 = self.weights1 + np.random.randn(self.input_layer_size, self.hidden_layer_size) * mutation_rate
nn.bias1 = self.bias1 + np.random.randn(1, self.hidden_layer_size) * mutation_rate
nn.weights2 = self.weights2 + np.random.randn(self.hidden_layer_size, self.output_layer_size) * mutation_rate
nn.bias2 = self.bias2 + np.random.randn(1, self.output_layer_size) * mutation_rate
population.append(nn)
best_nn = None
best_val_loss = float('inf')
train_losses = []
val_losses = []
for i in range(self.max_iter):
for nn in population:
nn.forward_propagation(X_train)
nn.backward_propagation(X_train, y_train)
train_loss = np.mean((nn.y_hat - y_train) ** 2)
val_loss = np.mean((nn.predict(X_val) - y_val) ** 2)
if val_loss < best_val_loss:
best_nn = nn
best_val_loss = val_loss
train_losses.append(train_loss)
val_losses.append(val_loss)
self.weights1 = best_nn.weights1
self.bias1 = best_nn.bias1
self.weights2 = best_nn.weights2
self.bias2 = best_nn.bias2
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='train loss')
plt.plot(val_losses, label='val loss')
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.legend()
plt.show()
def predict(self, X):
self.forward_propagation(X)
return self.y_hat
def plot_regression(self, X, y):
y_pred = self.predict(X)
plt.scatter(X, y)
plt.plot(X, y_pred, color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.show()
def plot_error(self, X, y):
y_pred = self.predict(X)
error = y - y_pred
plt.hist(error, bins=20)
plt.xlabel('Error')
plt.ylabel('Count')
plt.show()
```
接下来,我们可以使用这个类来训练一个神经网络。我们可以使用 sklearn 自带的一个数据集来进行训练和测试。这个数据集包含了一个人每天饮食摄入的卡路里和他们的体重数据。我们要使用神经网络来预测一个人的体重。
首先,我们要加载数据集:
```python
from sklearn.datasets import load_diabetes
data = load_diabetes()
X = data.data[:, 2].reshape(-1, 1)
y = data.target.reshape(-1, 1)
# Split the data into training, validation and test sets
X_train = X[:300]
y_train = y[:300]
X_val = X[300:400]
y_val = y[300:400]
X_test = X[400:]
y_test = y[400:]
```
然后,我们可以创建一个神经网络实例:
```python
nn = NeuralNetwork(input_layer_size=1, hidden_layer_size=10, output_layer_size=1, learning_rate=0.1, max_iter=100)
```
接着,我们就可以使用遗传算法来训练神经网络了:
```python
nn.train(X_train, y_train, X_val, y_val, population_size=10, mutation_rate=0.1)
```
最后,我们可以使用测试集来评估模型的性能:
```python
nn.plot_regression(X_test, y_test)
nn.plot_error(X_test, y_test)
```
这里是完整的代码:
阅读全文