5个文件夹分别是文学、教育、计算机、医学、体育。要求编写程序,通过对5个类别中文档的学习,通过词频统计获取5种文档的类别向量。然后自己寻找任意5个类别的文档,通过你的程序处理,能够获得正确的类别信息。并通过一定数量的文档测试,计算你的程序分类的准确率。python
时间: 2024-05-15 20:12:35 浏览: 56
这是一个文本分类问题,可以使用机器学习中的朴素贝叶斯算法来解决。具体的实现步骤如下:
1. 构建语料库,将文学、教育、计算机、医学、体育五个类别的文档分别存放在对应的文件夹下。
2. 对于每个类别,统计每个词在该类别中出现的频率,并计算该类别中总的词数。这些词频信息可以保存在一个字典中。
```python
import os
# 定义一个函数,统计文件夹中每个词的出现频率
def count_words(folder):
word_counts = {}
total_words = 0
for filename in os.listdir(folder):
with open(os.path.join(folder, filename), 'r', encoding='utf-8') as f:
for line in f:
words = line.strip().split()
for word in words:
if word not in word_counts:
word_counts[word] = 0
word_counts[word] += 1
total_words += 1
return word_counts, total_words
# 统计每个类别中词语的出现频率和总词数
folders = ['文学', '教育', '计算机', '医学', '体育']
word_counts = {}
total_words = {}
for folder in folders:
word_counts[folder], total_words[folder] = count_words(folder)
```
3. 对于一个新的文档,计算它在每个类别下的概率,选择概率最大的类别作为文档的类别。为了避免概率为零的情况,可以使用拉普拉斯平滑。
```python
# 定义一个函数,计算一个新文档在每个类别下的概率
def predict_class(text, word_counts, total_words):
classes = list(word_counts.keys())
probs = []
for c in classes:
prob = 0
for word in text.strip().split():
if word in word_counts[c]:
prob += log((word_counts[c][word] + 1) / (total_words[c] + len(word_counts[c])))
else:
prob += log(1 / (total_words[c] + len(word_counts[c])))
probs.append(prob)
max_prob = max(probs)
max_index = probs.index(max_prob)
return classes[max_index]
```
4. 对于任意一个文档,使用上述函数进行分类。
```python
# 读取一个文档,并进行分类
with open('test.txt', 'r', encoding='utf-8') as f:
text = f.read()
print(predict_class(text, word_counts, total_words))
```
5. 为了评估分类的准确率,可以使用交叉验证的方法,在每个类别中选取一部分作为测试集,其余的作为训练集。在测试集上进行分类,并计算分类的准确率。
```python
# 定义交叉验证函数,计算分类准确率
from random import shuffle
def cross_validation(folders, n_folds=5):
accuracy = 0
for i in range(n_folds):
train_counts = {}
train_total = {}
test_files = []
for folder in folders:
filenames = os.listdir(folder)
shuffle(filenames)
test_files += filenames[:len(filenames)//n_folds]
train_counts[folder], train_total[folder] = count_words(os.path.join(folder, filename) for filename in filenames[len(filenames)//n_folds:])
correct = 0
for filename in test_files:
with open(os.path.join(folder, filename), 'r', encoding='utf-8') as f:
text = f.read()
predicted_class = predict_class(text, train_counts, train_total)
if predicted_class == folder:
correct += 1
accuracy += correct / len(test_files)
return accuracy / n_folds
print(cross_validation(folders))
```
阅读全文