写一个DNN的毫米波雷达数据与图像数据融合的代码
时间: 2024-05-05 17:21:14 浏览: 218
雷达与红外图像跟踪融合源代码
以下是一个基于 PyTorch 的毫米波雷达数据与图像数据融合的 DNN 代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class RadarImageFusionNet(nn.Module):
def __init__(self):
super(RadarImageFusionNet, self).__init__()
self.conv1_radar = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2_radar = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv3_radar = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.pool_radar = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1_radar = nn.Linear(in_features=128 * 7 * 7, out_features=512)
self.conv1_image = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2_image = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv3_image = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.pool_image = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1_image = nn.Linear(in_features=128 * 7 * 7, out_features=512)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=2)
def forward(self, radar_data, image_data):
x_radar = F.relu(self.conv1_radar(radar_data))
x_radar = self.pool_radar(F.relu(self.conv2_radar(x_radar)))
x_radar = self.pool_radar(F.relu(self.conv3_radar(x_radar)))
x_radar = x_radar.view(-1, 128 * 7 * 7)
x_radar = F.relu(self.fc1_radar(x_radar))
x_image = F.relu(self.conv1_image(image_data))
x_image = self.pool_image(F.relu(self.conv2_image(x_image)))
x_image = self.pool_image(F.relu(self.conv3_image(x_image)))
x_image = x_image.view(-1, 128 * 7 * 7)
x_image = F.relu(self.fc1_image(x_image))
x = torch.cat((x_radar, x_image), dim=1)
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
这个模型包含两个分支,一个用于处理毫米波雷达数据,另一个用于处理图像数据。每个分支都包含三个卷积层和一个全连接层,最后将两个分支的输出拼接在一起,再经过两个全连接层产生最终的输出。在 forward 方法中,输入的 radar_data 和 image_data 分别经过雷达分支和图像分支处理,并将两个分支的输出拼接在一起。
阅读全文