基于时空注意力机制CNN和情绪识别EEG的抑郁识别,在有预处理好的脑电数据后如何将本设计实现,请提供详细思路并给出MATLAB上的实现代码
时间: 2024-05-03 18:23:21 浏览: 135
本设计可以分为以下几个步骤:
1. 数据预处理:根据实验要求,预处理EEG数据,包括去除眼电伪影、去除肌电伪影、滤波、分段等。
2. 特征提取:使用CNN模型提取时空特征。在CNN模型中,引入注意力机制可以加强对重要特征的关注,在情绪识别中可以提升模型的准确率。
3. 特征融合:将EEG数据和CNN提取的特征进行融合,得到一组更加丰富的特征向量。
4. 情绪分类:使用分类器对特征向量进行分类,得到抑郁的分类结果。
以下为MATLAB代码实现:
1. 数据预处理
```matlab
% load EEG data
EEG = pop_loadset('filename','eeg_data.set','filepath','./data/');
% remove eye artifact
EEG = pop_autorej(EEG, 'nogui','on','threshold',100,'startprob',5,'maxrej',5,'eegplot','off');
% remove muscle artifact
EEG = pop_clean_rawdata(EEG, 'FlatlineCriterion',5,'Highpass','off','Lowpass','off','ChannelCriterion','off','LineNoiseCriterion',4,'BurstCriterion','off','WindowCriterion','off','BurstRejection','off','Distance','euclidean','WindowLength',0.5,'WindowOverlap',0.5,'Taper','hanning','Measure','spec','ComputeSpectralPower','off','KeepLocations',false,'VerboseOutput','off');
% filter
EEG = pop_eegfiltnew(EEG, [], 40);
% epoch
EEG = pop_epoch( EEG, { '1' '2' '3' '4' }, [-1 3], 'newname', 'eeg_data epochs', 'epochinfo', 'yes');
```
2. 特征提取
```matlab
% define CNN model
layers = [
imageInputLayer([32 32 1])
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 128, 'Padding', 'same')
batchNormalizationLayer
reluLayer
globalAveragePooling2dLayer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
% define attention model
attention_layers = [
fullyConnectedLayer(128)
reluLayer
fullyConnectedLayer(128)
sigmoidLayer
attentionLayer];
% combine CNN and attention model
final_layers = [
layers
attention_layers];
% train CNN model
options = trainingOptions('adam', 'MaxEpochs', 20, 'MiniBatchSize', 64, 'Plots', 'training-progress');
net = trainNetwork(XTrain, YTrain, final_layers, options);
% extract features
feature_layer = final_layers(end-2);
XTrainFeatures = activations(net, XTrain, feature_layer);
% reshape features
XTrainFeatures = reshape(XTrainFeatures, size(XTrainFeatures, 4), []);
```
3. 特征融合
```matlab
% combine CNN features and EEG data
features = [XTrainFeatures, EEG.data(:,:)];
```
4. 情绪分类
```matlab
% train classifier
classifier = fitcsvm(features, YTrain);
% classify test data
XTestFeatures = activations(net, XTest, feature_layer);
XTestFeatures = reshape(XTestFeatures, size(XTestFeatures, 4), []);
test_features = [XTestFeatures, EEG_test.data(:,:)];
y_pred = predict(classifier, test_features);
```
以上代码仅为示例,实际使用时需要根据具体情况进行调整。
阅读全文