train_features, train_labels = next(iter(train_dataloader))
时间: 2024-01-17 19:03:06 浏览: 182
I'm sorry, but as an AI language model, I don't have access to any specific data or code. The code you provided is incomplete without the context of the libraries and variables you are using. Please provide more information about the variables and libraries used in your code.
相关问题
#创建一个dataset类。 import os import pandas as pd from torchvision.io import read_image from torch.utils.data import Dataset from torch.utils.data import DataLoader import chardet with open(r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', 'rb') as fp: result = chardet.detect(fp.read()) print(result) class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): #self.img_labels = pd.read_csv(annotations_file, sep=' ', header=None, encoding=result['encoding']) self.img_labels = pd.read_csv(annotations_file, sep=';', header=None, encoding=result['encoding']) self.img_labels[0] = self.img_labels[0].astype(str).str.cat(sep=' ') # 合并第一列为完整文件名 self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label train_dataset = CustomImageDataset(annotations_file=r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', img_dir = r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\data_batch_1',transform=None, target_transform=None) test_dataset = CustomImageDataset(annotations_file=r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', img_dir = r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\test_batch',transform=None, target_transform=None) train_features, train_labels = next(iter(train_dataloader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.show() print(f"Label: {label}")
这段代码创建了一个自定义的图像数据集类 CustomImageDataset,用于读取 CIFAR-10 数据集中的图像数据和标签。该类继承了 PyTorch 中的 Dataset 类,并实现了 __init__、__len__ 和 __getitem__ 方法。其中,__init__ 方法用于初始化数据集,__len__ 方法返回数据集中样本的数量,__getitem__ 方法返回给定索引的图像数据和标签。在代码中,使用 pandas 库读取 CIFAR-10 数据集中的标签文件,然后根据文件名和路径读取图像数据,并将其返回。
此外,代码还创建了两个数据集对象 train_dataset 和 test_dataset,分别用于训练和测试。最后,使用 PyTorch 中的 DataLoader 类加载数据集对象,生成用于训练模型的数据批次。代码还展示了如何读取数据批次中的图像数据和标签,并使用 matplotlib 库显示图像和标签。
阅读全文