python ones生成的数组类型转换
时间: 2023-10-22 22:05:37 浏览: 121
可以使用numpy库中的astype()函数将python ones生成的数组类型转换为其他类型。例如,将生成的数组转换为整型数组:
```python
import numpy as np
arr = np.ones((3, 4))
int_arr = arr.astype(int)
print(int_arr)
```
输出:
```
[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]
```
在这个例子中,使用astype()函数将原始的float类型数组转换为int类型数组。函数的参数可以是任何有效的numpy数据类型。
相关问题
python自动生成数组
在Python中,可以使用内置的`numpy`库来方便地生成数组。`numpy`提供了`arange`, `linspace`, `logspace`, `zeros`, `ones`, 和 `array`等函数来创建各种类型的数组。
1. `numpy.arange(start, stop, step, dtype=None)`: 生成等差数列,类似于范围函数,但可以指定步长和数据类型。
2. `numpy.linspace(start, stop, num, endpoint=True, retstep=False, dtype=None)`: 生成等间距的数值数组,包括或不包括终点。
3. `numpy.logspace(start, stop, num=50, base=10.0, endpoint=True, dtype=None)`: 生成等比数列,基数为指定的值。
4. `numpy.zeros(shape, dtype=float, order='C')`: 创建指定形状和数据类型的全零数组。
5. `numpy.ones(shape, dtype=float, order='C')`: 创建指定形状和数据类型的全一数组。
6. `numpy.array(object, dtype=None, copy=False, order='C', subok=False, deep=False)`: 将输入转换为数组,支持多种类型的输入。
例如:
```python
import numpy as np
# 创建一个从0到9的整数数组
arr1 = np.arange(10)
print(arr1)
# 创建一个等间距的浮点数数组,从0到1,包含10个元素
arr2 = np.linspace(0, 1, 10)
print(arr2)
# 创建一个对数空间的数组,底数为2,范围从1到100
arr3 = np.logspace(1, 2, 10)
print(arr3)
```
如果你有特定的需求,比如想要创建特定大小、填充特定值或有特定分布的数组,可以根据这些函数灵活组合或使用`numpy.random`模块来生成随机数组。
import cv2 import numpy as np import os def motion_blur1(image, degree=10, angle=45): image = np.array(image) # 生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高 M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1) motion_blur_kernel = np.diag(np.ones(degree)) motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree)) motion_blur_kernel = motion_blur_kernel / degree # 将UMat类型的图像转换为numpy数组类型的图像 blurred = cv2.filter2D(image.get(), -1, motion_blur_kernel) # convert to uint8 cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX) blurred = np.array(blurred, dtype=np.uint8) # 将numpy数组类型的图像转换为UMat类型的图像 blurred = cv2.UMat(blurred) return blurred filePath = r'D:\Users\Administrator\PycharmProjects\pythonProject\paper_need\blur' for i in os.listdir(filePath): outPath = r'D:\Users\Administrator\PycharmProjects\pythonProject\paper_need\blur.' + str(i) img = cv2.imread("./deblur/"+i) img = cv2.UMat(img) img_ = motion_blur1(img) cv2.imwrite(outPath,img_.get()),上述代码出现问题: 'numpy.ndarray' object has no attribute 'get'
这个问题是由于UMat类型的图像没有get()方法导致的。可以使用UMat类型的图像本身进行处理,无需调用get()方法。
这里是修改后的代码:
```python
import cv2
import numpy as np
import os
def motion_blur1(image, degree=10, angle=45):
image = np.array(image)
# 生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高
M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
motion_blur_kernel = np.diag(np.ones(degree))
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree))
motion_blur_kernel = motion_blur_kernel / degree
# 将UMat类型的图像直接进行处理
blurred = cv2.filter2D(image, -1, motion_blur_kernel)
# convert to uint8
cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
blurred = np.array(blurred, dtype=np.uint8)
blurred = cv2.UMat(blurred)
return blurred
filePath = r'D:\Users\Administrator\PycharmProjects\pythonProject\paper_need\blur'
for i in os.listdir(filePath):
outPath = r'D:\Users\Administrator\PycharmProjects\pythonProject\paper_need\blur.' + str(i)
img = cv2.imread("./deblur/"+i)
img = cv2.UMat(img)
img_ = motion_blur1(img)
cv2.imwrite(outPath,img_.get())
```
这里直接对UMat类型的图像进行处理,无需调用get()方法。
阅读全文