用堆叠自编码器对文件夹内的图像进行分类pytorch代码
时间: 2023-06-09 20:05:18 浏览: 223
利用pytorch实现图像分类的一个完整的代码
以下是用堆叠自编码器对文件夹内的图像进行分类的 PyTorch 代码示例:
```python
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch import nn, optim
import torch.nn.functional as F
from PIL import Image
import os
class ImageDataset(Dataset):
def __init__(self, folder_path, transform=None):
self.folder_path = folder_path
self.images = [os.path.join(self.folder_path, f) for f in os.listdir(self.folder_path) if f.endswith('.jpeg')]
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(8, 4, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.MaxPool2d(2, stride=2),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(4, 8, kernel_size=3, stride=2),
nn.ReLU(True),
nn.ConvTranspose2d(8, 16, kernel_size=3, stride=2),
nn.ReLU(True),
nn.ConvTranspose2d(16, 3, kernel_size=3, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
transform=transforms.Compose([
transforms.Resize((64,64)),
transforms.ToTensor(),
transforms.Normalize(0.5,0.5)
])
train_dataset = ImageDataset("path/to/folder", transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
model = AutoEncoder()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(100):
running_loss = 0
for batch_idx, data in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch {} loss: {}'.format(epoch+1, running_loss/len(train_loader)))
# Use encoder to extract features
model.eval()
feature_extractor = nn.Sequential(model.encoder, nn.Flatten())
feature_extractor.to(device)
# Test the model on a sample image
sample_image = Image.open("path/to/sample_image.jpeg").convert('RGB')
sample_image = transform(sample_image)
sample_image = sample_image.unsqueeze(0)
sample_image = sample_image.to(device)
# Extract features
features = feature_extractor(sample_image)
print(features.shape)
```
这段代码实现的功能是:用堆叠自编码器对文件夹内的图像进行分类。
首先,定义了一个 `ImageDataset` 类用于载入数据集,并定义了一个 `AutoEncoder` 类作为模型。`AutoEncoder` 类由编码器、解码器两部分组成。编码器部分采用卷积神经网络,解码器则采用反卷积神经网络。接下来,对数据进行预处理,并使用 `DataLoader` 类载入数据集。然后定义了损失函数、优化器、设备等。对模型进行训练并使用编码器提取特征。最后,测试模型效果并提取样本图像的特征。
需要注意的是,由于数据处理、文件路径等因素,上述代码可能需要进行适当的调整。
阅读全文