使用swin transformer还是ghostnet来替换YOLOv7主干网络用于检测车辆效果更好
时间: 2023-11-28 19:03:52 浏览: 142
基于Swin-Transformer改进的YOLOv7电力杆塔识别系统(文档+源码).zip
作为AI语言模型,我无法直接评估模型的效果,但是根据已有的研究和实验结果,使用Swin Transformer作为YOLOv7的主干网络可能会比使用GhostNet更好。
Swin Transformer是一种新的Transformer架构,它在ImageNet上的表现已经超过了其他传统的视觉模型,如ResNet和EfficientNet。Swin Transformer通过将图像分成若干个小块,配合跨层连接和相对位置编码,实现了较高的性能和较低的计算成本,适合在计算资源有限的设备上使用。
GhostNet是一个轻量级的卷积神经网络,它通过使用Ghost Module和Squeeze-and-Excitation (SE) Module来减少参数和计算量,从而实现高效的图像分类和目标检测。GhostNet在目标检测方面的表现也不错,但是与Swin Transformer相比,其性能略有不足。
因此,如果计算资源充足,建议使用Swin Transformer作为YOLOv7的主干网络,以获得更好的检测效果。如果计算资源受限,GhostNet也是一种不错的选择。
阅读全文