这段代码tf,conat时出现了问题for i in range(0, num_samples, batch_size): batch = x_data[i:i + batch_size] batch = tf.expand_dims(batch, axis=0) if i + batch_size > num_samples: batch_num = num_samples - i if batch_num == 1: feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num) else: feature_batch = model.predict(batch, batch_size=batch_num) tf.concat(features, axis=1) else: feature_batch = model.predict(batch, batch_size=batch_size) tf.concat(features, axis=1)
时间: 2024-03-24 10:35:44 浏览: 83
这段代码中有两个问题:
1. 在使用`tf.concat()`函数进行拼接时,没有将拼接后的结果重新赋值给`features`。因为`tf.concat()`函数返回的是拼接后的结果,需要将其重新赋值给`features`。修改后的代码如下:
```python
features = tf.concat([features, feature_batch], axis=1)
```
2. 在拼接之前,需要对`features`进行初始化。因为`features`是一个TensorFlow变量,需要使用`tf.Variable()`函数对其进行初始化。修改后的代码如下:
```python
features = tf.Variable(initial_value=tf.zeros((feature_shape, 0)), dtype=tf.float32)
```
综合修改后的代码如下:
```python
features = tf.Variable(initial_value=tf.zeros((feature_shape, 0)), dtype=tf.float32)
for i in range(0, num_samples, batch_size):
batch = x_data[i:i + batch_size]
batch = tf.expand_dims(batch, axis=0)
if i + batch_size > num_samples:
batch_num = num_samples - i
if batch_num == 1:
feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num)
else:
feature_batch = model.predict(batch, batch_size=batch_num)
features = tf.concat([features, feature_batch], axis=1)
else:
feature_batch = model.predict(batch, batch_size=batch_size)
features = tf.concat([features, feature_batch], axis=1)
```
希望能够帮到你!
阅读全文