自然语言分类transformer代码
时间: 2023-08-18 21:05:53 浏览: 102
### 回答1:
以下是一个基于transformer的自然语言分类代码示例,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class TransformerClassifier(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, n_layers, n_heads, dropout):
super().__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.pos_encoding = PositionalEncoding(hidden_dim, dropout)
encoder_layer = nn.TransformerEncoderLayer(hidden_dim, n_heads, hidden_dim * 4, dropout)
self.encoder = nn.TransformerEncoder(encoder_layer, n_layers)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, text):
embedded = self.embedding(text)
embedded = self.pos_encoding(embedded)
encoded = self.encoder(embedded)
pooled = torch.mean(encoded, dim=1)
logits = self.fc(pooled)
return logits
class PositionalEncoding(nn.Module):
def __init__(self, hidden_dim, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(dropout)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2) * -(math.log(10000.0) / hidden_dim))
sin = torch.sin(position * div_term)
cos = torch.cos(position * div_term)
pe = torch.cat((sin, cos), dim=1).unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x * math.sqrt(self.pe.shape[1])
x = x + self.pe[:, :x.shape[1]].clone().detach()
return self.dropout(x)
```
该模型包括一个嵌入层、一个位置编码层、多个transformer编码器层、一个全连接层。其中,位置编码层使用sine和cosine函数来向嵌入层添加位置信息。
训练代码:
```python
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for batch in iterator:
optimizer.zero_grad()
text, labels = batch
predictions = model(text)
loss = criterion(predictions, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
epoch_acc = 0
with torch.no_grad():
for batch in iterator:
text, labels = batch
predictions = model(text)
loss = criterion(predictions, labels)
acc = categorical_accuracy(predictions, labels)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def categorical_accuracy(preds, y):
max_preds = preds.argmax(dim=1, keepdim=True)
correct = max_preds.squeeze(1).eq(y)
return correct.sum() / torch.FloatTensor([y.shape[0]])
N_EPOCHS = 10
CLIP = 1
model = TransformerClassifier(INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, N_HEADS, DROPOUT)
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
for epoch in range(N_EPOCHS):
train_loss = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
print(f'Epoch: {epoch+1:02}')
print(f'\tTrain Loss: {train_loss:.3f}')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
```
其中,训练函数中使用交叉熵损失函数,评估函数中计算了分类精度。在训练过程中,使用Adam优化器进行优化,同时进行梯度裁剪以避免梯度爆炸问题。
### 回答2:
自然语言分类是指将自然语言文本分为不同的类别或标签。Transformer是一种强大的深度学习模型,经常被用于处理自然语言处理任务。下面是一个简单的自然语言分类Transformer代码示例:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerClassifier(nn.Module):
def __init__(self, num_classes, d_model, nhead, num_layers, d_feedforward, dropout):
super(TransformerClassifier, self).__init__()
self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model, nhead, d_feedforward, dropout), num_layers)
self.linear = nn.Linear(d_model, num_classes)
def forward(self, src):
src = src.permute(1, 0) # 调整输入形状
output = self.encoder(src)
output = output.mean(dim=0) # 对序列进行平均池化
output = self.linear(output)
return F.log_softmax(output, dim=1)
```
在这个代码中,模型的核心是TransformerEncoder,它是由多个TransformerEncoderLayer组成的。每个TransformerEncoderLayer包含一个多头自注意力机制和一个全连接前馈网络。
模型的输入是一个文本序列,shape为(batch_size, seq_len, d_model),其中batch_size为批大小,seq_len为序列长度,d_model为词嵌入维度。
在forward方法中,我们首先调整输入的形状,然后将其传递给TransformerEncoder来获取编码表示。然后,我们对编码表示进行平均池化,得到一个全局表示。最后,使用一个线性层将全局表示映射到类别标签空间,并使用log_softmax来计算预测概率。
这是一个简单的自然语言分类Transformer代码示例,你可以根据具体的任务需求进行进一步的修改和优化。
阅读全文