请选择实现网络模型LeNet、并在Mnist数据集和Fashion Mnist数据集上进行训练和验证。
时间: 2024-02-09 09:08:22 浏览: 85
各种卷积神经网络的实现(LeNet5、VGGNet、DenseNet等),在Mnist等数据集上验证.zip
好的,我将为您提供一个LeNet模型的实现示例,并在Mnist数据集和Fashion Mnist数据集上进行训练和验证。
LeNet模型的结构如下所示:
```
LeNet(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(pool1): AvgPool2d(kernel_size=2, stride=2, padding=0)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(pool2): AvgPool2d(kernel_size=2, stride=2, padding=0)
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
```
其中,conv1和conv2分别为两个卷积层,pool1和pool2分别为两个池化层,fc1、fc2和fc3分别为三个全连接层。
首先,我们需要导入必要的库和Mnist数据集:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 设置随机种子,保证实验结果的可重复性
torch.manual_seed(2021)
# 定义数据预处理方法
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载Mnist数据集
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
# 加载Fashion Mnist数据集
# trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
# testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)
# 定义数据加载器
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
```
然后,我们可以定义LeNet模型并进行训练和验证:
```python
# 定义LeNet模型
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义训练函数
def train(net, criterion, optimizer, trainloader, num_epochs):
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i+1) % 100 == 0:
print('[Epoch %d, Batch %d] loss: %.3f' % (epoch+1, i+1, running_loss/100))
running_loss = 0.0
# 定义测试函数
def test(net, dataloader):
correct = 0
total = 0
with torch.no_grad():
for data in dataloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy on test set: %.2f%%' % (accuracy))
# 实例化LeNet模型、损失函数和优化器
net = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
# 在Mnist数据集上进行训练和验证
num_epochs = 10
train(net, criterion, optimizer, trainloader, num_epochs)
test(net, testloader)
# 在Fashion Mnist数据集上进行训练和验证
# num_epochs = 10
# train(net, criterion, optimizer, trainloader, num_epochs)
# test(net, testloader)
```
最后,我们可以得到在Mnist数据集和Fashion Mnist数据集上的准确率。如果您想要进一步提高模型的表现,可以考虑调节超参数或使用其他更复杂的网络模型。
阅读全文