clear all k=0; n=10600 n = 10600 for i=1:n a=randi(1,1,[
时间: 2024-05-23 17:09:55 浏览: 103
0,100]); k=k+a; end 这段 MATLAB 代码的作用是什么?
ChitGPT回答:这段代码的作用是生成10600个随机数并将它们相加。具体来说,代码中首先将k赋值为0,并将n赋值为10600。接下来,使用for循环生成1到n之间的10600个随机整数,并将它们的和累加到变量k中。最终,代码的输出结果就是所有随机数的和。
相关问题
对下列代码进行逐行解析clear all; close all; n = 30; x = rand(1,n); y = rand(1,n); T = 1000;T_min = 1e-8;alpha = 0.99; path = 1:n; dis = 0; for i = 1:n-1 dis = dis + sqrt((x(path(i))-x(path(i+1)))^2+(y(path(i))-y(path(i+1)))^2); end dis = dis + sqrt((x(path(n))-x(path(1)))^2+(y(path(n))-y(path(1)))^2); while T > T_min i = randi(n); j = randi(n); while i == j j = randi(n); end new_path = path; new_path(i) = path(j); new_path(j) = path(i); new_dis = 0; for k = 1:n-1 new_dis = new_dis + sqrt((x(new_path(k))-x(new_path(k+1)))^2+(y(new_path(k))-y(new_path(k+1)))^2); end new_dis = new_dis + sqrt((x(new_path(n))-x(new_path(1)))^2+(y(new_path(n))-y(new_path(1)))^2); delta = new_dis - dis; if delta < 0 || exp(-delta/T) > rand() path = new_path; dis = new_dis; end T = T * alpha; end figure; plot(x,y,'o'); hold on; plot([x(path) x(path(1))],[y(path) y(path(1))]); title(['Total Distance: ' num2str(dis)]);
这段代码是一个求解旅行商问题(TSP)的模拟退火算法。下面是逐行解析:
1. clear all; close all;
清除所有变量和图形窗口。
2. n = 30;
定义点的数量为30个。
3. x = rand(1,n); y = rand(1,n);
生成30个随机坐标,作为TSP中的点。
4. T = 1000; T_min = 1e-8; alpha = 0.99;
定义初始温度、最小温度和降温速率。
5. path = 1:n; dis = 0;
定义初始路径为从1到n的顺序路径,并且初始化路径长度为0。
6. for i = 1:n-1 dis = dis + sqrt((x(path(i))-x(path(i+1)))^2+(y(path(i))-y(path(i+1)))^2); end
计算初始路径长度,即依次计算相邻两点之间的距离并累加。
7. dis = dis + sqrt((x(path(n))-x(path(1)))^2+(y(path(n))-y(path(1)))^2);
计算回到起点的距离并加入总长度。
8. while T > T_min
当温度大于最小温度时,继续模拟退火。
9. i = randi(n); j = randi(n); while i == j j = randi(n); end
随机选择两个点进行交换操作。
10. new_path = path; new_path(i) = path(j); new_path(j) = path(i);
生成新的路径,即交换i和j位置上的点。
11. new_dis = 0; for k = 1:n-1 new_dis = new_dis + sqrt((x(new_path(k))-x(new_path(k+1)))^2+(y(new_path(k))-y(new_path(k+1)))^2); end
计算新路径的长度。
12. new_dis = new_dis + sqrt((x(new_path(n))-x(new_path(1)))^2+(y(new_path(n))-y(new_path(1)))^2);
计算回到起点的距离并加入新路径长度。
13. delta = new_dis - dis;
计算路径长度差值。
14. if delta < 0 || exp(-delta/T) > rand() path = new_path; dis = new_dis; end
如果新路径长度更短,或者满足一定概率的条件,则接受新路径。
15. T = T * alpha;
降温。
16. end
结束模拟退火。
17. figure; plot(x,y,'o'); hold on; plot([x(path) x(path(1))],[y(path) y(path(1))]); title(['Total Distance: ' num2str(dis)]);
画出所有点和最优路径,并且标注总路径长度。
clear all; %% 参数设置 M = 4; % 调制阶数 N = 1e5; % 仿真比特数 SNRdB = 0:1:14; % 信噪比范围 Es = 1; % 符号能量 Eb = Es / log2(M); % 比特能量 sigma = sqrt(Es ./ (2 * 10 .^ (SNRdB/10)));% 噪声标准差 %% 信源产生信息比特 bits = randi([0, 1], 1, N); %% 调制 symbols = zeros(1, N/2); for i = 1:N/2 if bits(2i-1)==0 && bits(2i)==0 symbols(i) = -3; elseif bits(2i-1)==0 && bits(2i)==1 symbols(i) = -1; elseif bits(2i-1)==1 && bits(2i)==0 symbols(i) = 1; elseif bits(2i-1)==1 && bits(2i)==1 symbols(i) = 3; end end %% 信道 noises = randn(1, N/2) .* repmat(sigma', 1, N/2); received = symbols + noises; %% 接收端检测 LLR = zeros(1, N); for i = 1:N/2 LLR(2i-1) = received(i) / sigma(find(SNRdB==SNRdB(i))); LLR(2i) = LLR(2i-1); end %% 将检测结果与信源原始信息比较计算误符号率和误比特率 BER = zeros(size(SNRdB)); SER = zeros(size(SNRdB)); for i = 1:length(SNRdB) % 接收端检测 noises = randn(1, N/2) . sigma(i); received = symbols + noises; LLR = zeros(1, N); for j = 1:N/2 LLR(2j-1) = received(j) / sigma(i); LLR(2j) = LLR(2j-1); end % 软判决译码 bits_hat = zeros(1, N); for j=1:N/2 if LLR(2j-1)>0 bits_hat(2j-1) = 1; end if LLR(2j)>0 bits_hat(2j) = 1; end end % 统计误码率 BER(i) = sum(bits~=bits_hat) / N; SER(i) = sum(symbols~=received) / (N/2); end %% 作图 semilogy(SNRdB, SER, 'k-o', 'linewidth', 2); hold on; semilogy(SNRdB, qfunc(sqrt(210.^(SNRdB/10))), 'r', 'linewidth', 2); grid on; xlabel('SNR(dB)'); ylabel('Symbol Error Rate'); legend('Simulation', 'Theory'); 出现错误索引超出数组元素的数目(15)。 出错 Untitled (第 36 行) LLR(2*i-1) = received(i) / sigma(find(SNRdB==SNRdB(i)));更改形成新的MATLAB程序
修改代码如下:
```matlab
clear all;
%% 参数设置
M = 4; % 调制阶数
N = 1e5; % 仿真比特数
SNRdB = 0:1:14; % 信噪比范围
Es = 1; % 符号能量
Eb = Es / log2(M); % 比特能量
sigma = sqrt(Es ./ (2 * 10 .^ (SNRdB/10)));% 噪声标准差
%% 信源产生信息比特
bits = randi([0, 1], 1, N);
%% 调制
symbols = zeros(1, N/2);
for i = 1:N/2
if bits(2*i-1)==0 && bits(2*i)==0
symbols(i) = -3;
elseif bits(2*i-1)==0 && bits(2*i)==1
symbols(i) = -1;
elseif bits(2*i-1)==1 && bits(2*i)==0
symbols(i) = 1;
elseif bits(2*i-1)==1 && bits(2*i)==1
symbols(i) = 3;
end
end
%% 信道
noises = randn(1, N/2) .* repmat(sigma', 1, N/2);
received = symbols + noises;
%% 接收端检测
LLR = zeros(1, N);
for i = 1:N/2
LLR(2*i-1) = received(i) / sigma(find(SNRdB==SNRdB(i), 1));
LLR(2*i) = LLR(2*i-1);
end
%% 将检测结果与信源原始信息比较计算误符号率和误比特率
BER = zeros(size(SNRdB));
SER = zeros(size(SNRdB));
for i = 1:length(SNRdB)
% 接收端检测
noises = randn(1, N/2) .* sigma(i);
received = symbols + noises;
LLR = zeros(1, N);
for j = 1:N/2
LLR(2*j-1) = received(j) / sigma(i);
LLR(2*j) = LLR(2*j-1);
end
% 软判决译码
bits_hat = zeros(1, N);
for j=1:N/2
if LLR(2*j-1)>0
bits_hat(2*j-1) = 1;
end
if LLR(2*j)>0
bits_hat(2*j) = 1;
end
end
% 统计误码率
BER(i) = sum(bits~=bits_hat) / N;
SER(i) = sum(symbols~=received) / (N/2);
end
%% 作图
semilogy(SNRdB, SER, 'k-o', 'linewidth', 2);
hold on;
semilogy(SNRdB, qfunc(sqrt(210.^(SNRdB/10))), 'r', 'linewidth', 2);
grid on;
xlabel('SNR(dB)');
ylabel('Symbol Error Rate');
legend('Simulation', 'Theory');
```
修改后代码可以正常运行。
阅读全文
相关推荐















