量子计算机可以攻克NTRU算法吗
时间: 2023-10-12 19:59:09 浏览: 137
NTRU算法是一种基于格的加密算法,不同于RSA加密算法的大整数分解问题,因此其安全性不受Shor算法的影响。目前尚无已知的量子算法可以有效地攻破基于格的加密算法,因此NTRU算法在理论上对量子计算机也是安全的。但是,随着量子计算技术的不断发展,未来可能会出现新的量子算法来攻破基于格的加密算法,因此研究基于量子计算的密码学算法是非常重要的一项任务。
相关问题
C语言实现ntru算法
NTRU算法是一种公钥加密算法,它的实现不仅需要数学基础,还需要一定的编程技巧。下面是一个简单的C语言实现,仅供参考。
首先,需要定义一些常量和数据结构:
```c
#define NTRU_N 503
#define NTRU_Q 2048
#define NTRU_P 3
#define NTRU_K 8
#define NTRU_QINV 1025
#define NTRU_KEYBYTES (sizeof(int) + sizeof(poly) + sizeof(poly) + sizeof(poly))
#define NTRU_CIPHERTEXTBYTES (sizeof(poly) + sizeof(poly))
typedef struct {
int coeffs[NTRU_N];
} poly;
typedef struct {
poly f;
poly g;
poly h;
} ntru_keypair;
typedef struct {
poly c;
poly e;
} ntru_ciphertext;
```
其中,`poly`表示一个多项式,`ntru_keypair`表示NTRU算法的密钥对,`ntru_ciphertext`表示NTRU算法的密文。
接下来,实现一些基本的函数:
```c
static inline int mod(int x, int q) {
int r = x % q;
return r < 0 ? r + q : r;
}
static inline int ntru_rand(void) {
return rand() % NTRU_Q;
}
void poly_add(poly *result, const poly *a, const poly *b) {
for (int i = 0; i < NTRU_N; ++i) {
result->coeffs[i] = mod(a->coeffs[i] + b->coeffs[i], NTRU_Q);
}
}
void poly_sub(poly *result, const poly *a, const poly *b) {
for (int i = 0; i < NTRU_N; ++i) {
result->coeffs[i] = mod(a->coeffs[i] - b->coeffs[i], NTRU_Q);
}
}
void poly_mul(poly *result, const poly *a, const poly *b) {
for (int i = 0; i < NTRU_N; ++i) {
result->coeffs[i] = 0;
for (int j = 0; j < NTRU_N; ++j) {
result->coeffs[i] += a->coeffs[j] * b->coeffs[mod(i - j, NTRU_N)];
}
result->coeffs[i] = mod(result->coeffs[i], NTRU_Q);
}
}
```
以上函数分别实现了模运算、随机数生成和多项式加、减、乘运算。
接下来,实现NTRU算法的核心函数:
```c
void ntru_gen_keypair(ntru_keypair *kp) {
poly t, p, q, f, g, h, invq;
int w, success;
while (1) {
success = 0;
while (!success) {
for (int i = 0; i < NTRU_N; ++i) {
t.coeffs[i] = ntru_rand() % NTRU_P - NTRU_P / 2;
}
for (int i = 0; i < NTRU_N; ++i) {
p.coeffs[i] = ntru_rand() % 2;
}
w = 0;
for (int i = 0; i < NTRU_N; ++i) {
w += p.coeffs[i];
}
if (w == NTRU_K && p.coeffs[0] == 1 && p.coeffs[NTRU_N - 1] == 0) {
success = 1;
}
}
poly_mul(&q, &p, &t);
for (int i = 0; i < NTRU_N; ++i) {
q.coeffs[i] = mod(q.coeffs[i] + NTRU_Q / 2, NTRU_Q);
}
for (int i = 0; i < NTRU_N; ++i) {
invq.coeffs[i] = mod(NTRU_Q - q.coeffs[i], NTRU_Q);
}
poly_mul(&f, &invq, &p);
poly_mul(&g, &invq, &t);
for (int i = 0; i < NTRU_N; ++i) {
h.coeffs[i] = mod(NTRU_Q - f.coeffs[i], NTRU_Q);
}
if (poly_add(&t, &g, &h), &f) {
break;
}
}
kp->f = f;
kp->g = g;
kp->h = h;
}
void ntru_encrypt(ntru_ciphertext *ct, const poly *m, const ntru_keypair *kp) {
poly e, c;
for (int i = 0; i < NTRU_N; ++i) {
e.coeffs[i] = ntru_rand() % NTRU_Q - NTRU_Q / 2;
}
poly_mul(&c, &e, &kp->f);
poly_add(&c, m, &c);
poly_mul(&e, &e, &kp->h);
ct->c = c;
ct->e = e;
}
void ntru_decrypt(poly *m, const ntru_ciphertext *ct, const ntru_keypair *kp) {
poly r;
poly_mul(&r, &ct->c, &kp->g);
poly_sub(m, &ct->e, &r);
for (int i = 0; i < NTRU_N; ++i) {
m->coeffs[i] = mod(m->coeffs[i] * NTRU_QINV, NTRU_Q);
}
}
```
以上函数分别实现了密钥对生成、加密和解密操作。
最后,提供一个完整的代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#define NTRU_N 503
#define NTRU_Q 2048
#define NTRU_P 3
#define NTRU_K 8
#define NTRU_QINV 1025
#define NTRU_KEYBYTES (sizeof(int) + sizeof(poly) + sizeof(poly) + sizeof(poly))
#define NTRU_CIPHERTEXTBYTES (sizeof(poly) + sizeof(poly))
typedef struct {
int coeffs[NTRU_N];
} poly;
typedef struct {
poly f;
poly g;
poly h;
} ntru_keypair;
typedef struct {
poly c;
poly e;
} ntru_ciphertext;
static inline int mod(int x, int q) {
int r = x % q;
return r < 0 ? r + q : r;
}
static inline int ntru_rand(void) {
return rand() % NTRU_Q;
}
void poly_add(poly *result, const poly *a, const poly *b) {
for (int i = 0; i < NTRU_N; ++i) {
result->coeffs[i] = mod(a->coeffs[i] + b->coeffs[i], NTRU_Q);
}
}
void poly_sub(poly *result, const poly *a, const poly *b) {
for (int i = 0; i < NTRU_N; ++i) {
result->coeffs[i] = mod(a->coeffs[i] - b->coeffs[i], NTRU_Q);
}
}
void poly_mul(poly *result, const poly *a, const poly *b) {
for (int i = 0; i < NTRU_N; ++i) {
result->coeffs[i] = 0;
for (int j = 0; j < NTRU_N; ++j) {
result->coeffs[i] += a->coeffs[j] * b->coeffs[mod(i - j, NTRU_N)];
}
result->coeffs[i] = mod(result->coeffs[i], NTRU_Q);
}
}
void ntru_gen_keypair(ntru_keypair *kp) {
poly t, p, q, f, g, h, invq;
int w, success;
while (1) {
success = 0;
while (!success) {
for (int i = 0; i < NTRU_N; ++i) {
t.coeffs[i] = ntru_rand() % NTRU_P - NTRU_P / 2;
}
for (int i = 0; i < NTRU_N; ++i) {
p.coeffs[i] = ntru_rand() % 2;
}
w = 0;
for (int i = 0; i < NTRU_N; ++i) {
w += p.coeffs[i];
}
if (w == NTRU_K && p.coeffs[0] == 1 && p.coeffs[NTRU_N - 1] == 0) {
success = 1;
}
}
poly_mul(&q, &p, &t);
for (int i = 0; i < NTRU_N; ++i) {
q.coeffs[i] = mod(q.coeffs[i] + NTRU_Q / 2, NTRU_Q);
}
for (int i = 0; i < NTRU_N; ++i) {
invq.coeffs[i] = mod(NTRU_Q - q.coeffs[i], NTRU_Q);
}
poly_mul(&f, &invq, &p);
poly_mul(&g, &invq, &t);
for (int i = 0; i < NTRU_N; ++i) {
h.coeffs[i] = mod(NTRU_Q - f.coeffs[i], NTRU_Q);
}
if (poly_add(&t, &g, &h), &f) {
break;
}
}
kp->f = f;
kp->g = g;
kp->h = h;
}
void ntru_encrypt(ntru_ciphertext *ct, const poly *m, const ntru_keypair *kp) {
poly e, c;
for (int i = 0; i < NTRU_N; ++i) {
e.coeffs[i] = ntru_rand() % NTRU_Q - NTRU_Q / 2;
}
poly_mul(&c, &e, &kp->f);
poly_add(&c, m, &c);
poly_mul(&e, &e, &kp->h);
ct->c = c;
ct->e = e;
}
void ntru_decrypt(poly *m, const ntru_ciphertext *ct, const ntru_keypair *kp) {
poly r;
poly_mul(&r, &ct->c, &kp->g);
poly_sub(m, &ct->e, &r);
for (int i = 0; i < NTRU_N; ++i) {
m->coeffs[i] = mod(m->coeffs[i] * NTRU_QINV, NTRU_Q);
}
}
void print_poly(const char *name, const poly *p) {
printf("%s: [", name);
for (int i = 0; i < NTRU_N; ++i) {
printf("%d,", p->coeffs[i]);
}
printf("]\n");
}
int main() {
ntru_keypair kp;
ntru_ciphertext ct;
poly m, m2;
srand(time(NULL));
ntru_gen_keypair(&kp);
for (int i = 0; i < NTRU_N; ++i) {
m.coeffs[i] = ntru_rand() % NTRU_Q - NTRU_Q / 2;
}
print_poly("m", &m);
ntru_encrypt(&ct, &m, &kp);
print_poly("c", &ct.c);
print_poly("e", &ct.e);
ntru_decrypt(&m2, &ct, &kp);
print_poly("m2", &m2);
return 0;
}
```
以上代码实现了NTRU算法的密钥对生成、加密和解密操作,并对加密、解密前后的多项式进行了打印。
NTRU算法基本原理
NTRU(Nth Degree Polynomial Ring Unit)算法是一种基于格的公钥加密算法,其基本原理如下:
1. 参数选择:选择合适的参数来构建一个多项式环。包括选择一个大素数 q,以及多项式环的维度 N 和权重参数 w。
2. 密钥生成:生成公钥和私钥。首先,随机选择两个多项式 f 和 g,它们的系数来自于离散高斯分布。然后,计算私钥 h = f / g(取模 q),并将其保密存储。公钥为 f / h(取模 q)。
3. 加密:要加密一个消息 m,首先将其转换为一个多项式 m(x)。然后,随机选择一个小多项式 r,并计算 e = (m(x) + r * h) mod q。最后,将 e 作为密文发送出去。
4. 解密:接收者使用私钥 h 将密文 e 还原为多项式 e(x)。然后,计算 m = (e(x) * g) mod q。最后,将 m 转换回消息形式。
NTRU算法的安全性基于多项式近似问题和格问题的困难性。它具有较高的性能和较短的密钥长度,被广泛应用于轻量级密码学和物联网安全等领域。
阅读全文