在Linux服务器上如何指定使用某台特定的GPU来运行jupyterlab的某个python程序
时间: 2024-02-27 22:53:17 浏览: 198
在Linux服务器上指定使用某台特定的GPU来运行jupyterlab的某个python程序,需要执行以下步骤:
1. 确保服务器上已经安装了GPU驱动和CUDA库。
2. 安装jupyterlab。
3. 安装jupyterlab-nvidia插件。该插件可以让jupyterlab使用NVIDIA GPU来运行代码。
4. 编写一个python程序,并将其保存为.py文件。
5. 在终端中使用以下命令启动jupyterlab:
```
CUDA_VISIBLE_DEVICES=<设备号> jupyter lab
```
其中,<设备号>是GPU设备的编号,可以是0、1、2等,表示使用哪一块GPU来运行jupyterlab。
例如,如果要使用设备号为1的GPU来运行jupyterlab,可以使用以下命令:
```
CUDA_VISIBLE_DEVICES=1 jupyter lab
```
6. 打开jupyterlab界面,在界面中找到并打开保存的.py文件。
7. 在代码单元格中加入以下代码,将程序运行在指定的GPU上:
```
import os
os.environ["CUDA_VISIBLE_DEVICES"]="<设备号>"
```
其中,<设备号>是GPU设备的编号,可以是0、1、2等,表示使用哪一块GPU来运行程序。
例如,如果要使用设备号为1的GPU来运行程序,可以使用以下代码:
```
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
```
8. 运行程序即可在指定的GPU上运行。
阅读全文