matlab实现TCN时间卷积神经网络的时间序列预测的多输入数据导入
时间: 2023-10-03 18:06:56 浏览: 164
MATLAB实现TCN时间卷积网络多输入回归预测(完整源码和数据)
5星 · 资源好评率100%
如果我们需要在TCN时间卷积神经网络中使用多维度的输入数据进行时间序列预测,可以使用MATLAB中的Table和Timetable数据类型来导入数据。
下面是一个简单的示例,演示如何使用Table和Timetable数据类型导入多维度的时间序列数据:
```
% 导入数据
data = load('multi_dim_time_series_data.mat');
data_table = table(data.X1, data.X2, data.X3, 'VariableNames', {'X1', 'X2', 'X3'});
data_timetable = timetable(datetime(data.Time), data_table);
% 将数据分为训练集和测试集
train_data = data_timetable(1:end-12, :);
test_data = data_timetable(end-11:end, :);
```
在这个示例中,我们使用了一个Table数据类型和一个Timetable数据类型来导入多维度的时间序列数据。其中,Table数据类型用于存储每个时间点的多维度数据,Timetable数据类型用于将Table数据类型与时间轴相关联。
接下来,我们可以使用这些数据来构建TCN神经网络模型,训练模型,预测结果,并进行结果分析,与之前的示例类似。
阅读全文