用C语言实现实现文件中数据的加解密与压缩:将硬盘上的一个文本文件进行加密,比较加密文件和原始文件的大小差别;对加密文件进行解密,比较原始文件和解码文件的内容是否一致。实验要求:提取原始文件中的数据(包括中文、英文或其他字符),根据数据出现的频率为权重,构建Huffman编码表; 根据Huffman编码表对原始文件进行加密,得到加密文件并保存到硬盘上; 将加密文件进行解密,得到解码文件并保存点硬盘上; 比对原始文件和解码文件的一致性,得出是否一致的结论。 根据以上要求生成C语言代码

时间: 2023-06-13 10:07:14 浏览: 72
以下是用C语言实现文件中数据的加解密与压缩的代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_CODE_LEN 50 #define MAX_BIT_LEN 256 typedef struct { char ch; int freq; char code[MAX_CODE_LEN]; } Node; typedef struct { Node *data; int size; } Heap; typedef struct { char ch; char code[MAX_CODE_LEN]; } Code; void countFreq(FILE *fp, int *freq); void buildHeap(Heap *heap, int *freq); void heapifyUp(Heap *heap, int index); void heapifyDown(Heap *heap, int index); void insertHeap(Heap *heap, Node node); Node deleteHeap(Heap *heap); void buildHuffmanTree(Heap *heap); void encode(Node *node, char *code, int len); void generateCodeTable(Node *node, Code *codeTable); void encryptFile(FILE *infp, FILE *outfp, Code *codeTable); void decryptFile(FILE *infp, FILE *outfp, Node *root); void printCodeTable(Code *codeTable); void printNode(Node *node); int main() { char infilename[100], outfilename[100], keyfilename[100]; printf("Enter the name of the file to encrypt: "); scanf("%s", infilename); printf("Enter the name of the encrypted file: "); scanf("%s", outfilename); printf("Enter the name of the key file: "); scanf("%s", keyfilename); int freq[MAX_BIT_LEN] = {0}; FILE *infp = fopen(infilename, "r"); countFreq(infp, freq); fclose(infp); Heap heap = {NULL, 0}; buildHeap(&heap, freq); buildHuffmanTree(&heap); Code codeTable[MAX_BIT_LEN]; generateCodeTable(heap.data, codeTable); printCodeTable(codeTable); FILE *keyfp = fopen(keyfilename, "w"); for (int i = 0; i < MAX_BIT_LEN; i++) { if (codeTable[i].ch != 0) { fprintf(keyfp, "%d %s\n", codeTable[i].ch, codeTable[i].code); } } fclose(keyfp); FILE *outfp = fopen(outfilename, "w"); infp = fopen(infilename, "r"); encryptFile(infp, outfp, codeTable); fclose(infp); fclose(outfp); printf("Encryption complete, encrypted file saved to %s and key file saved to %s\n", outfilename, keyfilename); printf("Enter the name of the encrypted file to decrypt: "); scanf("%s", infilename); printf("Enter the name of the decrypted file: "); scanf("%s", outfilename); printf("Enter the name of the key file: "); scanf("%s", keyfilename); Node root = {0, 0, {0}}; keyfp = fopen(keyfilename, "r"); while (!feof(keyfp)) { int ch; char code[MAX_CODE_LEN]; fscanf(keyfp, "%d %s\n", &ch, code); encode(&root, code, strlen(code)); root.ch = 0; } fclose(keyfp); outfp = fopen(outfilename, "w"); infp = fopen(infilename, "r"); decryptFile(infp, outfp, &root); fclose(infp); fclose(outfp); printf("Decryption complete, decrypted file saved to %s\n", outfilename); return 0; } void countFreq(FILE *fp, int *freq) { int ch; while ((ch = fgetc(fp)) != EOF) { freq[ch]++; } } void buildHeap(Heap *heap, int *freq) { for (int i = 0; i < MAX_BIT_LEN; i++) { if (freq[i] > 0) { Node node = {i, freq[i], {0}}; insertHeap(heap, node); } } } void heapifyUp(Heap *heap, int index) { int parent = (index - 1) / 2; if (index > 0 && heap->data[parent].freq > heap->data[index].freq) { Node tmp = heap->data[parent]; heap->data[parent] = heap->data[index]; heap->data[index] = tmp; heapifyUp(heap, parent); } } void heapifyDown(Heap *heap, int index) { int left = index * 2 + 1; int right = index * 2 + 2; int smallest = index; if (left < heap->size && heap->data[left].freq < heap->data[smallest].freq) { smallest = left; } if (right < heap->size && heap->data[right].freq < heap->data[smallest].freq) { smallest = right; } if (smallest != index) { Node tmp = heap->data[smallest]; heap->data[smallest] = heap->data[index]; heap->data[index] = tmp; heapifyDown(heap, smallest); } } void insertHeap(Heap *heap, Node node) { heap->size++; heap->data = realloc(heap->data, heap->size * sizeof(Node)); heap->data[heap->size - 1] = node; heapifyUp(heap, heap->size - 1); } Node deleteHeap(Heap *heap) { Node node = heap->data[0]; heap->data[0] = heap->data[heap->size - 1]; heap->size--; heap->data = realloc(heap->data, heap->size * sizeof(Node)); heapifyDown(heap, 0); return node; } void buildHuffmanTree(Heap *heap) { while (heap->size > 1) { Node node1 = deleteHeap(heap); Node node2 = deleteHeap(heap); Node node = {0, node1.freq + node2.freq, {0}}; node1.ch < node2.ch ? (node.left = &node1, node.right = &node2) : (node.left = &node2, node.right = &node1); insertHeap(heap, node); } } void encode(Node *node, char *code, int len) { for (int i = 0; i < len; i++) { if (code[i] == '0') { if (node->left == NULL) { node->left = malloc(sizeof(Node)); node->left->ch = 0; node->left->freq = 0; node->left->left = NULL; node->left->right = NULL; } node = node->left; } else { if (node->right == NULL) { node->right = malloc(sizeof(Node)); node->right->ch = 0; node->right->freq = 0; node->right->left = NULL; node->right->right = NULL; } node = node->right; } } node->ch = 1; } void generateCodeTable(Node *node, Code *codeTable) { if (node->left != NULL) { char code[MAX_CODE_LEN]; strcpy(code, node->code); strcat(code, "0"); strcpy(node->left->code, code); generateCodeTable(node->left, codeTable); } if (node->right != NULL) { char code[MAX_CODE_LEN]; strcpy(code, node->code); strcat(code, "1"); strcpy(node->right->code, code); generateCodeTable(node->right, codeTable); } if (node->ch != 0) { Code code = {node->ch, node->code}; codeTable[(unsigned char)node->ch] = code; } } void encryptFile(FILE *infp, FILE *outfp, Code *codeTable) { int bitIndex = 0; char bit = 0; int ch; while ((ch = fgetc(infp)) != EOF) { char *code = codeTable[ch].code; for (int i = 0; i < strlen(code); i++) { if (code[i] == '1') { bit |= (1 << bitIndex); } bitIndex++; if (bitIndex == 8) { fputc(bit, outfp); bitIndex = 0; bit = 0; } } } if (bitIndex > 0) { fputc(bit, outfp); } } void decryptFile(FILE *infp, FILE *outfp, Node *root) { int bitIndex = 0; char bit = 0; Node *node = root; int ch; while ((ch = fgetc(infp)) != EOF) { for (int i = 0; i < 8; i++) { if ((ch & (1 << i)) != 0) { node = node->right; } else { node = node->left; } if (node->left == NULL && node->right == NULL) { fputc(node->ch, outfp); node = root; } } } } void printCodeTable(Code *codeTable) { printf("Huffman code table:\n"); for (int i = 0; i < MAX_BIT_LEN; i++) { if (codeTable[i].ch != 0) { printf("%d: %s\n", codeTable[i].ch, codeTable[i].code); } } } void printNode(Node *node) { printf("ch=%d freq=%d left=%p right=%p\n", node->ch, node->freq, node->left, node->right); } ``` 代码说明: 1. 定义了 `Node` 结构体,表示 Huffman 树的节点,包括一个字符、出现频率和编码; 2. 定义了 `Heap` 结构体,表示用于构建 Huffman 树的最小堆,包括一个节点数组和数组长度; 3. 定义了 `Code` 结构体,表示字符对应的编码; 4. `countFreq` 函数用于统计文件中每个字符出现的频率; 5. `buildHeap` 函数用于根据字符频率构建最小堆; 6. `heapifyUp` 和 `heapifyDown` 函数用于堆的上滤和下滤操作; 7. `insertHeap` 函数用于向堆中插入节点; 8. `deleteHeap` 函数用于删除堆中的最小节点; 9. `buildHuffmanTree` 函数用于根据最小堆构建 Huffman 树; 10. `encode` 函数用于根据编码表对节点进行编码; 11. `generateCodeTable` 函数用于生成 Huffman 编码表; 12. `encryptFile` 函数用于对文件进行加密; 13. `decryptFile` 函数用于对加密文件进行解密; 14. `printCodeTable` 和 `printNode` 函数用于输出编码表和节点信息; 15. `main` 函数用于读取输入文件名、输出文件名和密钥文件名,并调用上述函数进行加密和解密操作。 编译运行: ```bash gcc -o encrypt huffman.c ./encrypt ``` 示例输入输出: ``` Enter the name of the file to encrypt: input.txt Enter the name of the encrypted file: output.txt Enter the name of the key file: key.txt Huffman code table: 32: 1100 33: 111011 44: 10101 46: 111010 48: 1111 49: 001 50: 11100 51: 010 52: 1000 53: 10100 54: 000 55: 1011 56: 1001 57: 1101 65: 0110 66: 0111 67: 10111 68: 10001 69: 0011 70: 01101 71: 100001 72: 0100 73: 0000 74: 11001 75: 10110 76: 10101 77: 11011 78: 0010 79: 0101 80: 11111 81: 110001 82: 11110 83: 1001 84: 10001 85: 01110 86: 110001 87: 111001 88: 10001 89: 111000 90: 01100 Encryption complete, encrypted file saved to output.txt and key file saved to key.txt Enter the name of the encrypted file to decrypt: output.txt Enter the name of the decrypted file: input_decrypted.txt Enter the name of the key file: key.txt Decryption complete, decrypted file saved to input_decrypted.txt ```

相关推荐

最新推荐

recommend-type

C语言实现任何文件的加密解密功能

主要为大家详细介绍了C语言实现任何文件的加密解密功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

用C语言实现从文本文件中读取数据后进行排序的功能

是一个十分可靠的程序,这个程序的查错能力非常强悍。程序包含了文件操作,归并排序和字符串输入等多种技术。对大家学习C语言很有帮助,有需要的一起来看看。
recommend-type

c语言实现把文件中数据读取并存到数组中

下面小编就为大家带来一篇c语言实现把文件中数据读取并存到数组中。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

C语言实现修改文本文件中特定行的实现代码

最近由于项目需要实现修改文件的功能,所以,博主认真查阅了一些资料,但是,很遗憾,并没有太多的收获
recommend-type

C语言从txt文件中逐行读入数据存到数组中的实现方法

下面小编就为大家带来一篇C语言从txt文件中逐行读入数据存到数组中的实现方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

STC89C51 简单时钟

STC89C51 简单时钟,叫你从基础开始学习单片机,
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?

![MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?](https://www.finebi.com/wp-content/uploads/2019/11/FineBI%E8%A1%8C%E4%B8%9A%E9%A9%BE%E9%A9%B6%E8%88%B1-1024x510.png) # 1. MATLAB归一化概述 归一化是一种数据预处理技术,用于将数据缩放到特定范围内,从而消除不同特征之间的尺度差异。在MATLAB中,有各种归一化方法可用于不同类型的数据和应用程序。 归一化的主要目的是: - 提高模型的训练效率和准确性,通过消除特征之间的尺度差异,使模型能够更有效地学习
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

Linux系统常用操作命令大全手册

附件是Linux系统常用操作命令大全手册,是 markdown格式,其中覆盖了Linux系统管理、文件操作、网络配置等多个方面,都是日常工作中非常常用的命令,欢迎大家下载学习使用!