from sklearn import tree, datasets 2. from sklearn model selection import train test_split 3. wine=datasets.load_wine0 4、print("紅酒数据集中的健:Ing ".format(wine.keys()) 5, X=wine. data :,:21 6, y=wine.target 7. X train, X test,y _train,y _ test train_ test_split(X,y) 8, clf-tree.DecisionTreeClassifier(max depth=5) 9, clf. fit(X_ train,y _train) 10, score=clf.score(X test,y_test)

时间: 2023-12-24 12:21:29 浏览: 20
这段代码是用来对 wine 数据集进行决策树分类的。其中: 1. 第一行导入了 sklearn 库中的 tree 和 datasets 模块。 2. 第二行导入了 train_test_split 函数,用于将数据集分割成训练集和测试集。 3. 第三行加载了 wine 数据集。 4. 第四行打印出了 wine 数据集中的键名。 5. 第五行将数据集中除了最后一列以外的所有列作为特征向量 X。 6. 第六行将数据集最后一列作为标签向量 y。 7. 第七行使用 train_test_split 函数将 X 和 y 分别划分为训练集和测试集。 8. 第八行创建了一个深度为 5 的决策树分类器。 9. 第九行使用训练集对分类器进行训练。 10. 第十行计算了分类器在测试集上的准确率并将其赋值给变量 score。
相关问题

wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释

这段代码涉及了三种分类算法:决策树、最近邻分类算法和KNN算法。 首先,代码将数据集分为wine_data和wine_target两部分,其中wine_data是训练集,wine_target是测试集。接着,使用train_test_split函数将wine_data划分为训练集和测试集,其中测试集占总样本的30%。 其次,使用DecisionTreeClassifier类来实现决策树分类算法,其中criterion='entropy'表示使用熵来评价纯度。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用mean_squared_error函数计算预测值和真实值之间的均方误差,使用score函数计算训练集和测试集的分类精度。 接着,使用KNeighborsClassifier类来实现最近邻分类算法和KNN算法,其中n_neighbors表示选取的最近邻的个数。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用score函数计算训练集和测试集的分类精度。 最后,输出训练集和测试集的分类精度。

#将matplotlib的图表直接嵌入到Notebook之中 %matplotlib inline from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split #训练测试划分 Xtain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3) #确定随机的样本,使数值不再变化 clf=DecisionTreeClassifier(random_state=0) rfc=RandomForestClassifier(random_state=0) clf=clf.fit(Xtrain,Ytrain) rfc=rfc.fit(Xtrain,Ytrain) score_c=clf.score(Xtest,Ytest) score_r=rfc.score(Xtest,Ytest) #.format一个连接,一棵树和随机森林返回的结果,一般随机森林的准确性会更高一点 print("single Tree:{}".format(score_c),"random Forest:{}".format(score_r))

你的代码片段中使用了 `%matplotlib inline` 这个魔术命令,该命令用于在 Jupyter Notebook 中将 matplotlib 图表直接嵌入到 Notebook 中。但是,在你的代码中,我没有看到导入 matplotlib 的语句,也没有看到你使用 matplotlib 来创建图表并显示。 在你的代码中,你只是使用了 `print()` 函数来打印单一决策树和随机森林分类器的准确性。如果你想直接在 Notebook 中显示图表,你需要使用 matplotlib 的绘图函数(例如 `plt.plot()`、`plt.scatter()` 等)来创建图表,并使用 `plt.show()` 函数来显示图表。 以下是一个示例,显示如何在 Notebook 中创建一个简单的柱状图: ```python %matplotlib inline import matplotlib.pyplot as plt # 假设你已经计算了两个模型的分数 score_c = 0.85 score_r = 0.92 # 创建柱状图 plt.bar(['Single Tree', 'Random Forest'], [score_c, score_r]) plt.xlabel('Model') plt.ylabel('Accuracy') plt.title('Model Comparison') # 显示图表 plt.show() ``` 你可以根据你的需求和数据来调整图表的类型和样式。希望这能帮助到你!如果你有更多问题,请随时提问。

相关推荐

from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # 加载葡萄酒数据集 wine = load_wine() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3, random_state=42) # 初始化决策树模型 clf = DecisionTreeClassifier() # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 输出准确率 print("7:3的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为3:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.25, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred1 = clf.predict(X_test) # 输出准确率 print("3:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为4:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.2, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred2 = clf.predict(X_test) # 输出准确率 print("4:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为9:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.1, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred3 = clf.predict(X_test) # 输出准确率 print("9:1的准确率:", clf.score(X_test, y_test))

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

最新推荐

recommend-type

node-v11.8.0-linux-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

C语言期末大作业之图书信息管理系统实现-基于Dev-C++实现.zip

c语言期末大作业 C语言期末大作业之图书信息管理系统实现_基于Dev-C++实现
recommend-type

node-v8.16.2-sunos-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

爬虫selenium需求geckodriver

爬虫selenium最新版本缺少的,快速拿去使用。
recommend-type

毕业设计基于 YOLOv8 和 LPRNet 的车牌识别系统python源码+模型.zip

1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

输出删除n个数字,使得被删后的数字最小

对于这个问题,我可以提供一个基于贪心算法的解法。具体来说,我们可以首先遍历一遍数字序列,从左往右找到第一个比它右边的数字大的位置,然后删除这个位置的数字,并重置遍历起点为当前位置。重复这个过程,直到已经删除了n个数字或者数字序列已经被完全遍历。 代码实现如下: ``` def remove_digits(num, n): result = [] for i in range(len(num)): while n > 0 and result and result[-1] > num[i]: result.pop()
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。