高斯贝叶斯优化 matlab 
时间: 2023-05-14 15:01:48 浏览: 62
高斯贝叶斯优化是目前比较流行的一种优化算法,可以在无需过多先验信息的情况下,快速找到函数的全局最优解或者局部最优解。matlab是一款非常强大的数学计算软件,对于高斯贝叶斯优化算法也提供了很好的支持。
在matlab中使用高斯贝叶斯优化,需要先定义优化的目标函数和参数的取值范围。然后通过调用matlab提供的高斯过程模型(Gaussian Process Model)来进行预测和优化。matlab中提供了Gaussian Process Regression(GPR)和Bayesian Optimization Toolbox这两个工具箱,可以方便地实现高斯贝叶斯优化算法,同时可以针对具体问题进行调参和优化。
使用matlab进行高斯贝叶斯优化需要注意的是,定制合适的高斯过程模型和合适的超参数值对优化结果的精度和效率有很大的影响。此外,在实际应用中,还需要考虑如何处理优化问题中的约束条件和多目标优化问题。
总的来说,matlab是一款非常适合进行数学计算和科学计算的软件,可以提供很好的支持和工具箱,用来进行高斯贝叶斯优化也是非常便捷的。
相关问题
贝叶斯优化 GBDT 回归 MATLAB
可以请您具体说明您需要了解什么方面的贝叶斯优化 GBDT 回归 MATLAB?以下是一些可能有用的信息:
贝叶斯优化是一种基于贝叶斯定理的优化方法,可以用于优化黑盒函数,例如机器学习模型的超参数选择。在 GBDT(Gradient Boosting Decision Tree)回归中,贝叶斯优化可以用于优化树的深度、叶子节点数量等超参数,以达到更好的预测性能。
在 MATLAB 中,可以使用 BayesianOptimization 工具箱实现贝叶斯优化。该工具箱基于高斯过程模型,在每次迭代中选择最优的超参数组合,直到达到预设的迭代次数或收敛阈值。
要使用贝叶斯优化 GBDT 回归,需要先定义一个目标函数,该函数输入为超参数组合,输出为模型的预测误差。然后,使用 BayesianOptimization 工具箱进行迭代优化,最终得到最优的超参数组合,从而得到最优的 GBDT 回归模型。
希望以上信息能对您有所帮助。如果您还有其他问题,请随时问我。
贝叶斯优化函数matlab代码
以下是一个使用贝叶斯优化的示例函数的Matlab代码:
```matlab
function [xopt,fopt] = bayesopt_fun(f,x0,lb,ub,opts)
% BAYESOPT_FUN: Bayesian optimization of a function
% [XOPT,FOPT] = BAYESOPT_FUN(F,X0,LB,UB,OPTS) finds the minimum of a
% function F using Bayesian optimization. X0 is the initial guess,
% LB and UB are the lower and upper bounds of the variables, and OPTS
% is an options structure created using BAYESOPT_OPTIONS. The function
% F should take a vector of variables as input and return a scalar
% output.
%
% Example usage:
% f = @(x) sin(3*x) + x.^2 - 0.7*x;
% opts = bayesopt_options('AcquisitionFunctionName','expected-improvement-plus');
% [xopt,fopt] = bayesopt_fun(f,0,0,1,opts);
%
% See also BAYESOPT_OPTIONS.
% Check inputs
narginchk(4,5);
if nargin < 5, opts = bayesopt_options(); end
assert(isa(f,'function_handle'),'F must be a function handle');
assert(isvector(x0) && isnumeric(x0),'X0 must be a numeric vector');
assert(isvector(lb) && isnumeric(lb),'LB must be a numeric vector');
assert(isvector(ub) && isnumeric(ub),'UB must be a numeric vector');
assert(all(size(x0)==size(lb)) && all(size(x0)==size(ub)), ...
'X0, LB, and UB must have the same size');
opts = bayesopt_options(opts); % ensure opts has all fields
% Initialize
X = x0(:); % column vector
Y = f(X);
n = numel(X);
Xbest = X;
Ybest = Y;
fmin = min(Y);
fmax = max(Y);
% Loop over iterations
for i = 1:opts.MaxIterations
% Train surrogate model
model = fitrgp(X,Y,'Basis','linear','FitMethod','exact', ...
'PredictMethod','exact','Standardize',true, ...
'KernelFunction',opts.KernelFunction,'KernelParameters',opts.KernelParameters);
% Find next point to evaluate
if strcmp(opts.AcquisitionFunctionName,'expected-improvement-plus')
% Use expected improvement with small positive improvement threshold
impThreshold = 0.01*(fmax-fmin);
acqFcn = @(x) expected_improvement_plus(x,model,fmin,impThreshold);
else
% Use acquisition function specified in options
acqFcn = str2func(opts.AcquisitionFunctionName);
end
xnext = bayesopt_acq(acqFcn,model,lb,ub,opts.AcquisitionSamples);
% Evaluate function at next point
ynext = f(xnext);
% Update data
X = [X; xnext(:)];
Y = [Y; ynext];
if ynext < Ybest
Xbest = xnext;
Ybest = ynext;
end
fmin = min(Y);
fmax = max(Y);
% Check stopping criterion
if i >= opts.MaxIterations || (i > 1 && abs(Y(end)-Y(end-1))/Ybest <= opts.TolFun)
break;
end
end
% Return best point found
xopt = Xbest;
fopt = Ybest;
end
function EI = expected_improvement_plus(X,model,fmin,impThreshold)
% EXPECTED_IMPROVEMENT_PLUS: Expected improvement with small positive improvement threshold
% EI = EXPECTED_IMPROVEMENT_PLUS(X,MODEL,FMIN,IMPTHRESHOLD) computes
% the expected improvement (EI) of a surrogate model at the point X.
% The input MODEL is a regression model, FMIN is the current minimum
% value of the function being modeled, and IMPTHRESHOLD is a small
% positive improvement threshold.
%
% The expected improvement is defined as:
% EI = E[max(FMIN - Y, 0)]
% where Y is the predicted value of the surrogate model at X.
% The expected value is taken over the posterior distribution of Y.
%
% However, if the predicted value Y is within IMPTHRESHOLD of FMIN,
% then EI is set to IMPTHRESHOLD instead. This is done to encourage
% exploration of the search space, even if the expected improvement
% is very small.
%
% See also BAYESOPT_ACQ.
% Check inputs
narginchk(4,4);
% Compute predicted value and variance at X
[Y,~,sigma] = predict(model,X);
% Compute expected improvement
z = (fmin - Y - impThreshold)/sigma;
EI = (fmin - Y - impThreshold)*normcdf(z) + sigma*normpdf(z);
EI(sigma==0) = 0; % avoid division by zero
% Check if improvement is small
if Y >= fmin - impThreshold
EI = impThreshold;
end
end
function opts = bayesopt_options(varargin)
% BAYESOPT_OPTIONS: Create options structure for Bayesian optimization
% OPTS = BAYESOPT_OPTIONS() creates an options structure with default
% values for all parameters.
%
% OPTS = BAYESOPT_OPTIONS(P1,V1,P2,V2,...) creates an options structure
% with parameter names and values specified in pairs. Any unspecified
% parameters will take on their default values.
%
% OPTS = BAYESOPT_OPTIONS(OLDOPTS,P1,V1,P2,V2,...) creates a copy of
% the OLDOPTS structure, with any parameters specified in pairs
% overwriting the corresponding values.
%
% Available parameters:
% MaxIterations - Maximum number of iterations (default 100)
% TolFun - Tolerance on function value improvement (default 1e-6)
% KernelFunction - Name of kernel function for Gaussian process
% regression (default 'squaredexponential')
% KernelParameters - Parameters of kernel function (default [])
% AcquisitionFunctionName - Name of acquisition function for deciding
% which point to evaluate next (default
% 'expected-improvement-plus')
% AcquisitionSamples - Number of samples to use when evaluating the
% acquisition function (default 1000)
%
% See also BAYESOPT_FUN, BAYESOPT_ACQ.
% Define default options
opts = struct('MaxIterations',100,'TolFun',1e-6, ...
'KernelFunction','squaredexponential','KernelParameters',[], ...
'AcquisitionFunctionName','expected-improvement-plus','AcquisitionSamples',1000);
% Overwrite default options with user-specified options
if nargin > 0
if isstruct(varargin{1})
% Copy old options structure and overwrite fields with new values
oldopts = varargin{1};
for i = 2:2:nargin
fieldname = validatestring(varargin{i},fieldnames(opts));
oldopts.(fieldname) = varargin{i+1};
end
opts = oldopts;
else
% Overwrite fields of default options with new values
for i = 1:2:nargin
fieldname = validatestring(varargin{i},fieldnames(opts));
opts.(fieldname) = varargin{i+1};
end
end
end
end
function xnext = bayesopt_acq(acqFcn,model,lb,ub,nSamples)
% BAYESOPT_ACQ: Find next point to evaluate using an acquisition function
% XNEXT = BAYESOPT_ACQ(ACQFCN,MODEL,LB,UB,NSAMPLES) finds the next point
% to evaluate using the acquisition function ACQFCN and the regression
% model MODEL. LB and UB are the lower and upper bounds of the variables,
% and NSAMPLES is the number of random samples to use when maximizing
% the acquisition function.
%
% The input ACQFCN should be a function handle that takes a regression
% model and a set of input points as inputs, and returns a vector of
% acquisition function values. The set of input points is a matrix with
% one row per point and one column per variable.
%
% The output XNEXT is a vector containing the next point to evaluate.
%
% See also BAYESOPT_FUN, EXPECTED_IMPROVEMENT_PLUS.
% Check inputs
narginchk(4,5);
assert(isa(acqFcn,'function_handle'),'ACQFCN must be a function handle');
assert(isa(model,'RegressionGP'),'MODEL must be a regressionGP object');
assert(isvector(lb) && isnumeric(lb),'LB must be a numeric vector');
assert(isvector(ub) && isnumeric(ub),'UB must be a numeric vector');
assert(all(size(lb)==size(ub)),'LB and UB must have the same size');
if nargin < 5, nSamples = 1000; end
% Generate random samples
X = bsxfun(@plus,lb,bsxfun(@times,rand(nSamples,numel(lb)),ub-lb));
% Evaluate acquisition function
acq = acqFcn(model,X);
% Find maximum of acquisition function
[~,imax] = max(acq);
xnext = X(imax,:);
end
```
该示例代码实现了一个使用贝叶斯优化的函数优化器。该优化器使用高斯过程回归模型来近似目标函数,并使用期望改进加上(EI+)作为获取函数。您可以将此代码用作自己的优化问题的起点,并根据需要进行修改。
相关推荐
















